An Improved Deep Reinforcement Learning Algorithm for Path Planning in Unmanned Driving

强化学习 计算机科学 运动规划 人工智能 路径(计算) 机器学习 汽车工业 过度拟合 算法 人工神经网络 机器人 工程类 航空航天工程 程序设计语言
作者
Kai Yang,Li Liu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 67935-67944
标识
DOI:10.1109/access.2024.3400159
摘要

In the domain of intelligent transportation systems, the advent of autonomous driving technology represents a critical milestone, profoundly shaping the automotive industry's evolutionary path. This technology's core, particularly the algorithms facilitating driverless path planning, has attracted significant scholarly interest. This paper presents an advanced Deep Reinforcement Learning algorithm for Path Planning (DRL-PP), designed to rectify the shortcomings inherent in existing path planning techniques. Considering the complex nature of the environment, the DRL-PP algorithm is meticulously crafted to ascertain optimal actions, thereby effectively reducing the propensity for overfitting. The algorithm harnesses the capabilities of deep reinforcement learning, utilizing neural networks to identify the most advantageous action corresponding to a specific state. It then constructs an optimal action sequence, extending from the vehicle's initial position to its designated target. Additionally, the algorithm enhances the reward function by incorporating data pertinent to the objective. This refinement enables the nuanced differentiation of action values based on dynamically adjusted reward metrics, thereby augmenting the efficiency of the action selection process and yielding improved results in path planning. Empirical results validate the algorithm's proficiency in stabilizing the reward metric while minimizing exploratory steps, consistently surpassing comparative models in path-finding effectiveness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rre发布了新的文献求助10
刚刚
刚刚
1秒前
8R60d8应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
Jared应助科研通管家采纳,获得10
2秒前
8R60d8应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
Jared应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
KYT应助科研通管家采纳,获得10
3秒前
Jared应助科研通管家采纳,获得10
3秒前
Hanoi347应助科研通管家采纳,获得10
3秒前
8R60d8应助科研通管家采纳,获得10
3秒前
Jared应助科研通管家采纳,获得10
3秒前
Stella应助科研通管家采纳,获得10
3秒前
zzz应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
zw完成签到,获得积分10
5秒前
务实寄松发布了新的文献求助10
6秒前
orixero应助QinQin采纳,获得10
6秒前
mh完成签到,获得积分10
8秒前
Roman完成签到,获得积分10
8秒前
zmj完成签到,获得积分10
9秒前
yuy完成签到,获得积分20
9秒前
浮游应助wwaakk采纳,获得10
9秒前
浮雨微清发布了新的文献求助10
10秒前
优雅麦片发布了新的文献求助10
10秒前
10秒前
霜降发布了新的文献求助10
11秒前
12秒前
英俊的菲鹰完成签到,获得积分10
12秒前
Jasper应助yuy采纳,获得10
13秒前
14秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580794
求助须知:如何正确求助?哪些是违规求助? 4665572
关于积分的说明 14756655
捐赠科研通 4607084
什么是DOI,文献DOI怎么找? 2528118
邀请新用户注册赠送积分活动 1497448
关于科研通互助平台的介绍 1466379