Machine Learning in HR Analytics: A Comparative Study on the Predictive Accuracy of Attrition Models

损耗 机器学习 计算机科学 随机森林 决策树 人工智能 梯度升压 支持向量机 Boosting(机器学习) 集成学习 预测分析 逻辑回归 预测建模 分析 阿达布思 数据科学 医学 牙科
作者
Md Shaik Amzad Basha,Obulesu Varikunta,A Uma Devi,Shreya Raja
标识
DOI:10.1109/dicct61038.2024.10533064
摘要

One of the biggest challenges in human resource management is forecasting staff loss. This study will compare ML models. The research identifies the best accurate forecasting techniques to help firms retain key personnel and improve staff stability and performance. The statistical analysis used a comprehensive dataset including demographic information, work characteristics, and satisfaction indices, all of which have the potential to influence employee attrition. We used several machine learning models, such as Logistic Regression, Decision Tree, Random Forest, GBM, XGBoost, SVM, and KNN, to forecast attrition. With an emphasis on the underrepresented group of departing employees, we compared each model's accuracy, precision, recall, and F1-score. The area of human resource analytics is substantially improved by this study's thorough analysis of several machine learning algorithms for attrition prediction. The model comparison and performance evaluation conducted in this study provide valuable insights for practitioners and scholars. The article enhances the subject by examining overlooked ensemble and boosting approaches in HR analytics literature and comparing them to mainstream models. These sophisticated models are capable of capturing complex employee attrition patterns that simpler models may fail to detect. Model performance exhibits variability, with ensemble methodologies such as Random Forest and Gradient Boosting Machines demonstrating superior predictive capabilities for staff retention. When focusing on the accuracy and recall of the minority class (workers who left), the SVM model demonstrated a significant equilibrium, highlighting its usefulness in predicting attrition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助carpybala采纳,获得10
1秒前
FRL发布了新的文献求助10
1秒前
似冲发布了新的文献求助10
1秒前
2秒前
健壮雨兰发布了新的文献求助10
3秒前
自信鞯发布了新的文献求助10
3秒前
Wrl发布了新的文献求助10
3秒前
哦吼吼吼吼完成签到 ,获得积分10
4秒前
4秒前
zx发布了新的文献求助10
4秒前
Tara完成签到,获得积分10
4秒前
今后应助lidianji122采纳,获得10
5秒前
guapiqynn发布了新的文献求助10
6秒前
6秒前
轨迹发布了新的文献求助30
7秒前
领导范儿应助ZN采纳,获得10
8秒前
8秒前
唐画发布了新的文献求助10
8秒前
上官若男应助YY采纳,获得10
9秒前
基围虾发布了新的文献求助10
9秒前
10秒前
11秒前
冷冷完成签到 ,获得积分10
11秒前
搞怪的雨南完成签到,获得积分10
12秒前
208225完成签到,获得积分10
13秒前
14秒前
15秒前
15秒前
15秒前
15秒前
Lucas应助健壮雨兰采纳,获得10
16秒前
18秒前
那种完成签到,获得积分10
18秒前
mc发布了新的文献求助30
18秒前
樟脑丸发布了新的文献求助10
18秒前
19秒前
学术小白发布了新的文献求助10
19秒前
19秒前
基围虾完成签到,获得积分10
19秒前
guapiqynn发布了新的文献求助30
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469785
求助须知:如何正确求助?哪些是违规求助? 3062985
关于积分的说明 9080938
捐赠科研通 2753206
什么是DOI,文献DOI怎么找? 1510815
邀请新用户注册赠送积分活动 698061
科研通“疑难数据库(出版商)”最低求助积分说明 698018