Machine Learning in HR Analytics: A Comparative Study on the Predictive Accuracy of Attrition Models

损耗 机器学习 计算机科学 随机森林 决策树 人工智能 梯度升压 支持向量机 Boosting(机器学习) 集成学习 预测分析 逻辑回归 预测建模 分析 阿达布思 数据科学 医学 牙科
作者
Md Shaik Amzad Basha,Obulesu Varikunta,A Uma Devi,Shreya Raja
标识
DOI:10.1109/dicct61038.2024.10533064
摘要

One of the biggest challenges in human resource management is forecasting staff loss. This study will compare ML models. The research identifies the best accurate forecasting techniques to help firms retain key personnel and improve staff stability and performance. The statistical analysis used a comprehensive dataset including demographic information, work characteristics, and satisfaction indices, all of which have the potential to influence employee attrition. We used several machine learning models, such as Logistic Regression, Decision Tree, Random Forest, GBM, XGBoost, SVM, and KNN, to forecast attrition. With an emphasis on the underrepresented group of departing employees, we compared each model's accuracy, precision, recall, and F1-score. The area of human resource analytics is substantially improved by this study's thorough analysis of several machine learning algorithms for attrition prediction. The model comparison and performance evaluation conducted in this study provide valuable insights for practitioners and scholars. The article enhances the subject by examining overlooked ensemble and boosting approaches in HR analytics literature and comparing them to mainstream models. These sophisticated models are capable of capturing complex employee attrition patterns that simpler models may fail to detect. Model performance exhibits variability, with ensemble methodologies such as Random Forest and Gradient Boosting Machines demonstrating superior predictive capabilities for staff retention. When focusing on the accuracy and recall of the minority class (workers who left), the SVM model demonstrated a significant equilibrium, highlighting its usefulness in predicting attrition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
zhangzhisenn发布了新的文献求助10
2秒前
Virtual应助灵犀采纳,获得20
2秒前
2秒前
4秒前
lph应助鲸鱼采纳,获得10
4秒前
111关闭了111文献求助
4秒前
烟花应助达达利亚采纳,获得10
4秒前
科研通AI6应助微笑向卉采纳,获得10
4秒前
柿子吖发布了新的文献求助10
5秒前
5秒前
5秒前
李健的小迷弟应助WangXiaoze采纳,获得10
5秒前
5秒前
6秒前
彭于晏应助小李采纳,获得10
6秒前
ZZZ完成签到 ,获得积分10
6秒前
happy完成签到,获得积分10
7秒前
7秒前
小药丸完成签到 ,获得积分10
7秒前
我爱学习呢完成签到,获得积分10
7秒前
小猪完成签到,获得积分20
7秒前
as9988776654发布了新的文献求助20
8秒前
威武的十八完成签到,获得积分20
8秒前
8秒前
8秒前
8秒前
wuming7890发布了新的文献求助10
9秒前
9秒前
9秒前
wjx发布了新的文献求助50
9秒前
11秒前
伤心猪大肠完成签到,获得积分10
11秒前
Haho发布了新的文献求助10
11秒前
yi发布了新的文献求助10
11秒前
冰冰发布了新的文献求助10
11秒前
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604564
求助须知:如何正确求助?哪些是违规求助? 4012871
关于积分的说明 12425263
捐赠科研通 3693482
什么是DOI,文献DOI怎么找? 2036342
邀请新用户注册赠送积分活动 1069364
科研通“疑难数据库(出版商)”最低求助积分说明 953871