亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning in HR Analytics: A Comparative Study on the Predictive Accuracy of Attrition Models

损耗 机器学习 计算机科学 随机森林 决策树 人工智能 梯度升压 支持向量机 Boosting(机器学习) 集成学习 预测分析 逻辑回归 预测建模 分析 阿达布思 数据科学 医学 牙科
作者
Md Shaik Amzad Basha,Obulesu Varikunta,A Uma Devi,Shreya Raja
标识
DOI:10.1109/dicct61038.2024.10533064
摘要

One of the biggest challenges in human resource management is forecasting staff loss. This study will compare ML models. The research identifies the best accurate forecasting techniques to help firms retain key personnel and improve staff stability and performance. The statistical analysis used a comprehensive dataset including demographic information, work characteristics, and satisfaction indices, all of which have the potential to influence employee attrition. We used several machine learning models, such as Logistic Regression, Decision Tree, Random Forest, GBM, XGBoost, SVM, and KNN, to forecast attrition. With an emphasis on the underrepresented group of departing employees, we compared each model's accuracy, precision, recall, and F1-score. The area of human resource analytics is substantially improved by this study's thorough analysis of several machine learning algorithms for attrition prediction. The model comparison and performance evaluation conducted in this study provide valuable insights for practitioners and scholars. The article enhances the subject by examining overlooked ensemble and boosting approaches in HR analytics literature and comparing them to mainstream models. These sophisticated models are capable of capturing complex employee attrition patterns that simpler models may fail to detect. Model performance exhibits variability, with ensemble methodologies such as Random Forest and Gradient Boosting Machines demonstrating superior predictive capabilities for staff retention. When focusing on the accuracy and recall of the minority class (workers who left), the SVM model demonstrated a significant equilibrium, highlighting its usefulness in predicting attrition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lorentzh完成签到,获得积分10
1秒前
呵呵完成签到 ,获得积分10
3秒前
威武灵阳完成签到,获得积分10
5秒前
谨慎的友安完成签到 ,获得积分10
10秒前
11秒前
15秒前
15秒前
17秒前
木子木发布了新的文献求助10
21秒前
22秒前
星辰大海应助粗心的新之采纳,获得10
23秒前
zy95282应助13采纳,获得30
23秒前
999完成签到 ,获得积分10
24秒前
环走鱼尾纹完成签到 ,获得积分10
24秒前
Kunning完成签到 ,获得积分10
29秒前
今后应助专注的寒香采纳,获得30
36秒前
只要平凡发布了新的文献求助10
36秒前
glemy完成签到,获得积分20
41秒前
星之芋完成签到,获得积分10
47秒前
slayers应助科研通管家采纳,获得10
1分钟前
dong应助科研通管家采纳,获得10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
1分钟前
星希完成签到 ,获得积分10
1分钟前
可爱的函函应助李治稳采纳,获得10
1分钟前
幸运幸福完成签到,获得积分10
1分钟前
专注的寒香完成签到,获得积分20
1分钟前
1分钟前
Brosiga发布了新的文献求助10
1分钟前
1分钟前
杨无敌完成签到 ,获得积分10
1分钟前
大大的西瓜完成签到 ,获得积分10
1分钟前
李治稳发布了新的文献求助10
1分钟前
lhy完成签到,获得积分10
1分钟前
早睡早起完成签到 ,获得积分10
1分钟前
头孢西丁完成签到 ,获得积分10
1分钟前
白糖完成签到,获得积分10
1分钟前
搜集达人应助外星人采纳,获得10
1分钟前
共享精神应助李治稳采纳,获得10
1分钟前
Brosiga完成签到,获得积分10
2分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994955
求助须知:如何正确求助?哪些是违规求助? 3535071
关于积分的说明 11267066
捐赠科研通 3274842
什么是DOI,文献DOI怎么找? 1806483
邀请新用户注册赠送积分活动 883335
科研通“疑难数据库(出版商)”最低求助积分说明 809762