Design and research of heat dissipation system of electric vehicle lithium-ion battery pack based on artificial intelligence optimization algorithm

粒子群优化 电池组 计算机科学 遗传算法 渡线 算法 电池(电) 工程类 模拟 人工智能 机器学习 功率(物理) 量子力学 物理
作者
Qingwei Cheng,Henan Zhao
出处
期刊:Energy Informatics [Springer Nature]
卷期号:7 (1)
标识
DOI:10.1186/s42162-024-00352-0
摘要

Abstract This research focuses on the design of heat dissipation system for lithium-ion battery packs of electric vehicles, and adopts artificial intelligence optimization algorithm to improve the heat dissipation efficiency of the system. By integrating genetic algorithms and particle swarm optimization, the research goal is to optimize key design parameters of the cooling system to improve temperature control and extend battery life. In the process of algorithm implementation, genetic algorithm improves the diversity of population through crossover and mutation operations, thus enhancing the global search ability. Particle swarm optimization (PSO) improves local search accuracy and convergence speed by dynamically adjusting inertia weight and learning factor. The effects of different design schemes on heat dissipation performance were systematically evaluated by using computational fluid dynamics (CFD) software. The experimental results show that the efficiency of the cooling system is significantly improved after the application of the optimization algorithm, especially in the aspects of temperature distribution uniformity and maximum temperature reduction. The optimization algorithm also successfully shortens the thermal response time of the system and improves the adaptability and stability of the system under different working conditions. The computational complexity and execution time of these algorithms are also analyzed, which proves the efficiency and feasibility of these algorithms in practical applications. This study demonstrates the practicability and effectiveness of artificial intelligence optimization algorithm in the design of heat dissipation system of lithium-ion battery pack for electric vehicles, and provides valuable reference and practical guidance for the progress of heat dissipation technology of electric vehicles in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘梓发布了新的文献求助10
1秒前
1秒前
华仔应助吉如天采纳,获得10
1秒前
sdf完成签到,获得积分10
2秒前
2秒前
科研通AI6应助sdfghj采纳,获得10
2秒前
淡紫色鲸鱼完成签到,获得积分10
2秒前
阿一完成签到 ,获得积分10
3秒前
4秒前
utopia发布了新的文献求助30
4秒前
MengjiaZhai发布了新的文献求助30
5秒前
5秒前
张伟完成签到,获得积分10
5秒前
zjl发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
范12发布了新的文献求助10
6秒前
田様应助XUYQ采纳,获得10
6秒前
7秒前
洒脱完成签到 ,获得积分20
7秒前
酷拉皮卡发布了新的文献求助10
7秒前
李明星发布了新的文献求助10
8秒前
高佳智完成签到,获得积分20
8秒前
9秒前
wzy发布了新的文献求助10
9秒前
浮游应助范12采纳,获得10
9秒前
笑开口完成签到,获得积分10
9秒前
10秒前
丘比特应助英勇的半兰采纳,获得10
10秒前
HMing发布了新的文献求助10
10秒前
caowen完成签到 ,获得积分10
11秒前
科研通AI6应助云为翳采纳,获得10
11秒前
11秒前
12秒前
xym发布了新的文献求助10
12秒前
yk完成签到,获得积分10
12秒前
yinh发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461104
求助须知:如何正确求助?哪些是违规求助? 4566154
关于积分的说明 14303688
捐赠科研通 4491806
什么是DOI,文献DOI怎么找? 2460476
邀请新用户注册赠送积分活动 1449797
关于科研通互助平台的介绍 1425561