已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Design and research of heat dissipation system of electric vehicle lithium-ion battery pack based on artificial intelligence optimization algorithm

粒子群优化 电池组 计算机科学 遗传算法 渡线 算法 电池(电) 工程类 模拟 人工智能 机器学习 功率(物理) 量子力学 物理
作者
Qingwei Cheng,Henan Zhao
出处
期刊:Energy Informatics [Springer Nature]
卷期号:7 (1)
标识
DOI:10.1186/s42162-024-00352-0
摘要

Abstract This research focuses on the design of heat dissipation system for lithium-ion battery packs of electric vehicles, and adopts artificial intelligence optimization algorithm to improve the heat dissipation efficiency of the system. By integrating genetic algorithms and particle swarm optimization, the research goal is to optimize key design parameters of the cooling system to improve temperature control and extend battery life. In the process of algorithm implementation, genetic algorithm improves the diversity of population through crossover and mutation operations, thus enhancing the global search ability. Particle swarm optimization (PSO) improves local search accuracy and convergence speed by dynamically adjusting inertia weight and learning factor. The effects of different design schemes on heat dissipation performance were systematically evaluated by using computational fluid dynamics (CFD) software. The experimental results show that the efficiency of the cooling system is significantly improved after the application of the optimization algorithm, especially in the aspects of temperature distribution uniformity and maximum temperature reduction. The optimization algorithm also successfully shortens the thermal response time of the system and improves the adaptability and stability of the system under different working conditions. The computational complexity and execution time of these algorithms are also analyzed, which proves the efficiency and feasibility of these algorithms in practical applications. This study demonstrates the practicability and effectiveness of artificial intelligence optimization algorithm in the design of heat dissipation system of lithium-ion battery pack for electric vehicles, and provides valuable reference and practical guidance for the progress of heat dissipation technology of electric vehicles in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理的曼凡应助xbchen采纳,获得10
刚刚
2秒前
John完成签到 ,获得积分10
3秒前
海贼学术完成签到 ,获得积分10
4秒前
7秒前
guozizi发布了新的文献求助30
8秒前
光亮语梦完成签到 ,获得积分10
8秒前
8秒前
爱洗澡的拖鞋完成签到 ,获得积分0
9秒前
10秒前
研友_VZG7GZ应助碳水化合物采纳,获得10
11秒前
吕不韦发布了新的文献求助10
11秒前
落后的凝梦完成签到 ,获得积分10
12秒前
孟一完成签到 ,获得积分10
13秒前
14秒前
喜欢看夜里的天空完成签到,获得积分10
14秒前
15秒前
xiaobai发布了新的文献求助10
16秒前
chenzy完成签到,获得积分10
18秒前
19秒前
今后应助小胡萝白采纳,获得10
19秒前
23秒前
1107任务报告完成签到 ,获得积分10
29秒前
hyhyhyhy发布了新的文献求助10
29秒前
慎二完成签到 ,获得积分10
30秒前
30秒前
百地希留耶完成签到 ,获得积分10
32秒前
32秒前
研友_VZG7GZ应助热心盼波采纳,获得30
34秒前
充电宝应助xiaobai采纳,获得10
34秒前
36秒前
赘婿应助hyhyhyhy采纳,获得10
36秒前
winifred完成签到 ,获得积分10
36秒前
Apocalypse_zjz完成签到 ,获得积分10
36秒前
XL神放发布了新的文献求助30
37秒前
小胡萝白发布了新的文献求助10
37秒前
41秒前
orixero应助sun采纳,获得10
41秒前
书中魂我自不理会完成签到 ,获得积分10
42秒前
汤泽琪发布了新的文献求助10
46秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994469
求助须知:如何正确求助?哪些是违规求助? 3534869
关于积分的说明 11266676
捐赠科研通 3274686
什么是DOI,文献DOI怎么找? 1806453
邀请新用户注册赠送积分活动 883298
科研通“疑难数据库(出版商)”最低求助积分说明 809749