Design and research of heat dissipation system of electric vehicle lithium-ion battery pack based on artificial intelligence optimization algorithm

粒子群优化 电池组 计算机科学 遗传算法 渡线 算法 电池(电) 工程类 模拟 人工智能 机器学习 功率(物理) 量子力学 物理
作者
Qingwei Cheng,Henan Zhao
出处
期刊:Energy Informatics [Springer Nature]
卷期号:7 (1)
标识
DOI:10.1186/s42162-024-00352-0
摘要

Abstract This research focuses on the design of heat dissipation system for lithium-ion battery packs of electric vehicles, and adopts artificial intelligence optimization algorithm to improve the heat dissipation efficiency of the system. By integrating genetic algorithms and particle swarm optimization, the research goal is to optimize key design parameters of the cooling system to improve temperature control and extend battery life. In the process of algorithm implementation, genetic algorithm improves the diversity of population through crossover and mutation operations, thus enhancing the global search ability. Particle swarm optimization (PSO) improves local search accuracy and convergence speed by dynamically adjusting inertia weight and learning factor. The effects of different design schemes on heat dissipation performance were systematically evaluated by using computational fluid dynamics (CFD) software. The experimental results show that the efficiency of the cooling system is significantly improved after the application of the optimization algorithm, especially in the aspects of temperature distribution uniformity and maximum temperature reduction. The optimization algorithm also successfully shortens the thermal response time of the system and improves the adaptability and stability of the system under different working conditions. The computational complexity and execution time of these algorithms are also analyzed, which proves the efficiency and feasibility of these algorithms in practical applications. This study demonstrates the practicability and effectiveness of artificial intelligence optimization algorithm in the design of heat dissipation system of lithium-ion battery pack for electric vehicles, and provides valuable reference and practical guidance for the progress of heat dissipation technology of electric vehicles in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
taoyanhui完成签到,获得积分10
1秒前
熱風完成签到 ,获得积分10
5秒前
wwm发布了新的文献求助30
5秒前
碧蓝雁风完成签到 ,获得积分10
7秒前
黑咖啡完成签到,获得积分10
8秒前
aircraft06完成签到,获得积分10
9秒前
wuhu完成签到 ,获得积分10
9秒前
12秒前
nano完成签到 ,获得积分10
16秒前
Lulu完成签到 ,获得积分10
27秒前
火星上的一斩完成签到 ,获得积分10
29秒前
甜甜友容完成签到,获得积分10
32秒前
2012csc完成签到 ,获得积分0
34秒前
科研通AI5应助科研通管家采纳,获得10
35秒前
orixero应助科研通管家采纳,获得10
35秒前
科研通AI5应助科研通管家采纳,获得10
35秒前
科研通AI6应助科研通管家采纳,获得10
35秒前
科研通AI6应助科研通管家采纳,获得10
35秒前
Ranglin应助科研通管家采纳,获得10
35秒前
科研通AI6应助科研通管家采纳,获得10
36秒前
科研通AI6应助科研通管家采纳,获得10
36秒前
华仔应助ad采纳,获得10
38秒前
可颂完成签到 ,获得积分10
40秒前
Song完成签到,获得积分10
40秒前
Atlantis完成签到,获得积分10
42秒前
庄彧完成签到 ,获得积分10
43秒前
五月完成签到 ,获得积分10
44秒前
47秒前
Atlantis完成签到,获得积分10
49秒前
小羊打嗝发布了新的文献求助10
51秒前
一条鱼完成签到 ,获得积分10
54秒前
pp完成签到 ,获得积分10
55秒前
1111发布了新的文献求助20
58秒前
59秒前
Hiraeth完成签到 ,获得积分10
1分钟前
小羊打嗝完成签到,获得积分20
1分钟前
ad发布了新的文献求助10
1分钟前
耍酷的雪糕完成签到,获得积分10
1分钟前
ad发布了新的文献求助10
1分钟前
弹指一挥间完成签到 ,获得积分10
1分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5139399
求助须知:如何正确求助?哪些是违规求助? 4338351
关于积分的说明 13512517
捐赠科研通 4177552
什么是DOI,文献DOI怎么找? 2290837
邀请新用户注册赠送积分活动 1291362
关于科研通互助平台的介绍 1233666