Design and research of heat dissipation system of electric vehicle lithium-ion battery pack based on artificial intelligence optimization algorithm

粒子群优化 电池组 计算机科学 遗传算法 渡线 算法 电池(电) 工程类 模拟 人工智能 机器学习 功率(物理) 量子力学 物理
作者
Qingwei Cheng,Henan Zhao
出处
期刊:Energy Informatics [Springer Nature]
卷期号:7 (1)
标识
DOI:10.1186/s42162-024-00352-0
摘要

Abstract This research focuses on the design of heat dissipation system for lithium-ion battery packs of electric vehicles, and adopts artificial intelligence optimization algorithm to improve the heat dissipation efficiency of the system. By integrating genetic algorithms and particle swarm optimization, the research goal is to optimize key design parameters of the cooling system to improve temperature control and extend battery life. In the process of algorithm implementation, genetic algorithm improves the diversity of population through crossover and mutation operations, thus enhancing the global search ability. Particle swarm optimization (PSO) improves local search accuracy and convergence speed by dynamically adjusting inertia weight and learning factor. The effects of different design schemes on heat dissipation performance were systematically evaluated by using computational fluid dynamics (CFD) software. The experimental results show that the efficiency of the cooling system is significantly improved after the application of the optimization algorithm, especially in the aspects of temperature distribution uniformity and maximum temperature reduction. The optimization algorithm also successfully shortens the thermal response time of the system and improves the adaptability and stability of the system under different working conditions. The computational complexity and execution time of these algorithms are also analyzed, which proves the efficiency and feasibility of these algorithms in practical applications. This study demonstrates the practicability and effectiveness of artificial intelligence optimization algorithm in the design of heat dissipation system of lithium-ion battery pack for electric vehicles, and provides valuable reference and practical guidance for the progress of heat dissipation technology of electric vehicles in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张凯发布了新的文献求助10
1秒前
1秒前
小花卷儿发布了新的文献求助10
2秒前
踏实无敌发布了新的文献求助20
2秒前
2秒前
jinjing发布了新的文献求助30
3秒前
3秒前
科研通AI6应助栗子采纳,获得10
4秒前
5秒前
隐形曼青应助PCEEN采纳,获得10
6秒前
安安完成签到,获得积分10
6秒前
干净元菱发布了新的文献求助10
6秒前
空人有情完成签到 ,获得积分10
6秒前
小吴同志发布了新的文献求助10
6秒前
七羽完成签到 ,获得积分10
8秒前
8秒前
8秒前
10秒前
10秒前
tangxinhebaodan完成签到,获得积分10
11秒前
且慢应助dxc采纳,获得150
11秒前
iccv完成签到 ,获得积分10
11秒前
daviy1127发布了新的文献求助10
14秒前
14秒前
小牛发布了新的文献求助10
14秒前
Ava应助盛夏采纳,获得10
15秒前
15秒前
shusen发布了新的文献求助10
16秒前
AAA完成签到,获得积分20
16秒前
张可欣完成签到 ,获得积分10
16秒前
科研通AI2S应助danielsong采纳,获得10
17秒前
歇洛克发布了新的文献求助10
17秒前
17秒前
jj完成签到,获得积分10
18秒前
18秒前
打打应助PAIDAXXXX采纳,获得10
18秒前
天份完成签到,获得积分10
20秒前
乐乐应助小牛采纳,获得10
21秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580844
求助须知:如何正确求助?哪些是违规求助? 4665585
关于积分的说明 14756750
捐赠科研通 4607138
什么是DOI,文献DOI怎么找? 2528135
邀请新用户注册赠送积分活动 1497453
关于科研通互助平台的介绍 1466427