Online meta-learning approach for sensor fault diagnosis using limited data

断层(地质) 计算机科学 人工智能 机器学习 数据挖掘 地质学 地震学
作者
Lei Wang,D.‐J. Huang,Ke Huang,Marco Civera
出处
期刊:Smart Materials and Structures [IOP Publishing]
卷期号:33 (8): 085016-085016
标识
DOI:10.1088/1361-665x/ad5caf
摘要

Abstract The accurate and timely diagnosis of sensor faults plays a critical role in ensuring the reliability and performance of structural health monitoring (SHM) systems. However, the challenge is detecting, locating, and estimating sensor faults in an online manner using limited training data. To resolve this problem, a novel approach for online sensor fault diagnosis is proposed for SHM. The proposed approach is based on meta-learning, which enables superior model generalization capabilities using limited data. The detection, localization, and estimation of typical sensor faults in an online manner can be achieved efficiently by the proposed approach. First, a one-dimensional convolutional neural network (1D CNN) is designed to detect and locate faulty sensors. The initial model parameters of the 1D CNN are optimized using a model-agnostic meta-learning training strategy. This strategy allows the acquisition of transferable prior knowledge, which can speed up the learning process on new sensor fault detection and localization tasks. The meta-learning strategy also enables efficient and accurate detection and localization of potential faulty sensors with limited data. After detecting and locating the faulty sensors, an online updating algorithm based on a dual Kalman filter is used to estimate the severity of sensor faults and structural states simultaneously. The proposed approach is demonstrated with simulated sensor faults that cover a numerical example and field measurements from the Canton Tower. The results show that the proposed approach is applicable for online sensor fault diagnosis in SHM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
风格和发布了新的文献求助10
2秒前
Wason完成签到,获得积分10
3秒前
4秒前
缪尔岚完成签到,获得积分10
5秒前
傲娇宛发布了新的文献求助10
7秒前
好事成双完成签到,获得积分10
8秒前
8秒前
lwtsy发布了新的文献求助10
9秒前
wangyy65关注了科研通微信公众号
9秒前
Hello应助合适的灵枫采纳,获得10
12秒前
13秒前
15秒前
16秒前
风格和完成签到,获得积分10
16秒前
orixero应助围城采纳,获得10
17秒前
17秒前
朝朝发布了新的文献求助10
19秒前
手机应助派大星采纳,获得20
20秒前
21秒前
轻松的化蛹完成签到,获得积分10
21秒前
发疯的游子完成签到 ,获得积分10
22秒前
Quinta发布了新的文献求助10
22秒前
22秒前
bkagyin应助科研通管家采纳,获得20
22秒前
小二郎应助科研通管家采纳,获得10
22秒前
充电宝应助科研通管家采纳,获得10
22秒前
dongsheng应助科研通管家采纳,获得10
22秒前
昏睡的绍辉完成签到,获得积分10
22秒前
隐形曼青应助科研通管家采纳,获得10
22秒前
23秒前
林巧完成签到 ,获得积分10
23秒前
CipherSage应助dnicly采纳,获得10
23秒前
可爱的函函应助dnicly采纳,获得10
23秒前
wangyy65发布了新的文献求助10
24秒前
淡淡菠萝发布了新的文献求助10
24秒前
27秒前
28秒前
科研通AI2S应助XHT采纳,获得10
28秒前
31秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329457
求助须知:如何正确求助?哪些是违规求助? 2959146
关于积分的说明 8594359
捐赠科研通 2637590
什么是DOI,文献DOI怎么找? 1443651
科研通“疑难数据库(出版商)”最低求助积分说明 668775
邀请新用户注册赠送积分活动 656220