基因敲除
组蛋白
癌症研究
细胞生物学
肺
败血症
医学
生物
细胞凋亡
免疫学
内科学
基因
生物化学
作者
Dan Wu,Charles B. Spencer,Lilibeth Ortoga,Hao Zhang,Changhong Miao
出处
期刊:Redox biology
[Elsevier]
日期:2024-05-16
卷期号:74: 103194-103194
被引量:4
标识
DOI:10.1016/j.redox.2024.103194
摘要
Elevated lactate levels are a significant biomarker of sepsis and are positively associated with sepsis-related mortality. Sepsis-associated lung injury (ALI) is a leading cause of poor prognosis in clinical patients. However, the underlying mechanisms of lactate's involvement in sepsis-associated ALI remain unclear. In this study, we demonstrate that lactate regulates N6-methyladenosine (m6A) modification levels by facilitating p300-mediated H3K18la binding to the METTL3 promoter site. The METTL3-mediated m6A modification is enriched in ACSL4, and its mRNA stability is regulated through a YTHDC1-dependent pathway. Furthermore, short-term lactate stimulation upregulates ACSL4, which promotes mitochondria-associated ferroptosis. Inhibition of METTL3 through knockdown or targeted inhibition effectively suppresses septic hyper-lactate-induced ferroptosis in alveolar epithelial cells and mitigates lung injury in septic mice. Our findings suggest that lactate induces ferroptosis via the GPR81/H3K18la/METTL3/ACSL4 axis in alveolar epithelial cells during sepsis-associated ALI. These results reveal a histone lactylation-driven mechanism inducing ferroptosis through METTL3-mediated m6A modification. Targeting METTL3 represents a promising therapeutic strategy for patients with sepsis-associated ALI.
科研通智能强力驱动
Strongly Powered by AbleSci AI