黑色素瘤
癌变
生物
体细胞
癌症研究
癌症
遗传学
损失函数
变色
基因
表型
基因组不稳定性
DNA损伤
DNA
作者
Jake R. Conway,Riaz Gillani,Jett Crowdis,Brendan Reardon,Jihye Park,Soon Woo Han,Breanna M. Titchen,Mouadh Benamar,Rizwan Haq,Eliezer M. Van Allen
摘要
The diversity of structural variants (SVs) in melanoma and how they impact oncogenesis are incompletely known. We performed harmonized analysis of SVs across melanoma histological and genomic subtypes, and we identified distinct global properties between subtypes. These included the frequency and size of SVs and SV classes, their relation to chromothripsis events, and the role of topologically associated domain (TAD) boundary altering SVs on cancer-related genes. Following our prior identification of double-stranded break repair deficiency in a subset of triple wild-type cutaneous melanoma, we identified MRE11 and NBN loss-of-function SVs in melanomas with this mutational signature. Experimental knockouts of MRE11 and NBN, followed by olaparib cell viability assays in melanoma cells, indicated that dysregulation of each of these genes may cause sensitivity to PARPi in cutaneous melanomas. Broadly, harmonized analysis of melanoma SVs revealed distinct global genomic properties and molecular drivers, which may have biological and therapeutic impact.
科研通智能强力驱动
Strongly Powered by AbleSci AI