Identification of schizophrenia by applying interpretable radiomics modeling with structural magnetic resonance imaging of the cerebellum

小脑 神经影像学 精神分裂症(面向对象编程) 磁共振成像 心理学 神经科学 可解释性 人工智能 医学 计算机科学 精神科 放射科
作者
Minji Bang,Ki Sung Park,Seoung‐Ho Choi,Sung Soo Ahn,Jinna Kim,Seung‐Koo Lee,Yae Won Park,Sang‐Hyuk Lee
出处
期刊:Psychiatry and Clinical Neurosciences [Wiley]
标识
DOI:10.1111/pcn.13707
摘要

Aims The cerebellum is involved in higher‐order mental processing as well as sensorimotor functions. Although structural abnormalities in the cerebellum have been demonstrated in schizophrenia, neuroimaging techniques are not yet applicable to identify them given the lack of biomarkers. We aimed to develop a robust diagnostic model for schizophrenia using radiomic features from T1‐weighted magnetic resonance imaging (T1‐MRI) of the cerebellum. Methods A total of 336 participants (174 schizophrenia; 162 healthy controls [HCs]) were allocated to training (122 schizophrenia; 115 HCs) and test (52 schizophrenia; 47 HCs) cohorts. We obtained 2568 radiomic features from T1‐MRI of the cerebellar subregions. After feature selection, a light gradient boosting machine classifier was trained. The discrimination and calibration of the model were evaluated. SHapley Additive exPlanations (SHAP) was applied to determine model interpretability. Results We identified 17 radiomic features to differentiate participants with schizophrenia from HCs. In the test cohort, the radiomics model had an area under the curve, accuracy, sensitivity, and specificity of 0.89 (95% confidence interval: 0.82–0.95), 78.8%, 88.5%, and 75.4%, respectively. The model explanation by SHAP suggested that the second‐order size zone non‐uniformity feature from the right lobule IX and first‐order energy feature from the right lobules V and VI were highly associated with the risk of schizophrenia. Conclusion The radiomics model focused on the cerebellum demonstrates robustness in diagnosing schizophrenia. Our results suggest that microcircuit disruption in the posterior cerebellum is a disease‐defining feature of schizophrenia, and radiomics modeling has potential for supporting biomarker‐based decision‐making in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十七发布了新的文献求助10
刚刚
gyt发布了新的文献求助10
刚刚
时尚战斗机完成签到,获得积分10
刚刚
刚刚
华安发布了新的文献求助30
1秒前
1秒前
迟大猫应助dpp采纳,获得10
1秒前
2秒前
astral完成签到,获得积分10
2秒前
科研通AI5应助HJJHJH采纳,获得30
3秒前
Isabel发布了新的文献求助10
3秒前
3秒前
桑姊发布了新的文献求助10
4秒前
4秒前
Cyrus2022完成签到,获得积分10
4秒前
古哉完成签到,获得积分10
4秒前
xiachengcs发布了新的文献求助30
5秒前
炙热芝发布了新的文献求助30
5秒前
Rain完成签到,获得积分10
5秒前
高大的战斗机完成签到,获得积分10
5秒前
26347完成签到 ,获得积分10
5秒前
131343发布了新的文献求助10
5秒前
HZHZ完成签到,获得积分10
5秒前
沈海完成签到,获得积分10
6秒前
6秒前
smartbot发布了新的文献求助20
6秒前
new_vision发布了新的文献求助10
6秒前
英姑应助挽歌采纳,获得10
6秒前
自信富发布了新的文献求助10
7秒前
7秒前
8秒前
NexusExplorer应助包容的幻梅采纳,获得30
8秒前
9秒前
9秒前
Morning发布了新的文献求助10
9秒前
dpp完成签到,获得积分20
10秒前
cat发布了新的文献求助10
10秒前
姚运龙完成签到,获得积分10
10秒前
Jasper应助lost采纳,获得10
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762