A paradigm shift in processing large UAV image datasets for emergency management of natural hazards

工作流程 计算机科学 摄影测量学 大洪水 软件部署 人工智能 实时计算 数据挖掘 数据科学 地理 数据库 软件工程 考古
作者
Marco La Salandra,S. Nicotri,Giacinto Donvito,Alessandro Italiano,Rosa Colacicco,Giorgia Miniello,Isabella Lapietra,Rodolfo Roseto,Pierfrancesco Dellino,Domenico Capolongo
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:132: 103996-103996
标识
DOI:10.1016/j.jag.2024.103996
摘要

Over the past two decades, natural hazards have claimed the lives of tens of thousands of people worldwide, every year. Unmanned Aerial Vehicles (UAVs) are pivotal in natural hazard management, offering rapid deployment, flexibility, and cost-effectiveness. Advances such as Beyond Visual Line Of Sight (BVLOS) missions, swarm surveying, Artificial Intelligence (AI), edge-computing, and Structure from Motion (SfM) photogrammetry enhance their high-resolution spatiotemporal data capabilities, but the need for large datasets poses challenges in terms of storage, computational resources and, especially, processing time. This work introduces an original high-performance UAV photogrammetry workflow through the implementation of an open-source distributed approach using the ReCaS-Bari HPC cluster. Performance tests of the workflow, that includes computing parallelism, GPU usage, and hybrid bundle adjustment, demonstrate a significant reduction in processing time for large UAV image datasets. The workflow outperformed current methods, reducing processing time from 908 down to 104 min for 2,691 images and handling 11,549 images in just 7.8 h (a 70 % improvement over leading commercial software). Comparative analysis with cluster-based state-of-the-art approaches revealed noteworthy reductions, reaching up to 86 % for about 7,000 images. A case study, focusing on the Basento river (Southern Italy) flood event occurred in May 2023, proved the workflow practical implications in emergency management. A change detection assessment facilitated the identification and quantification of flood-induced morphological alterations along a 3 km of river reach length within about 3 h. The results highlight the workflow utility in providing accurate and near real-time information for emergency management, enhancing situational awareness and facilitating informed decision-making during disastrous events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nightmare完成签到,获得积分20
1秒前
哭泣笑柳发布了新的文献求助10
2秒前
nightmare发布了新的文献求助10
4秒前
大橙子发布了新的文献求助10
7秒前
9秒前
Zhh完成签到 ,获得积分10
9秒前
Tina完成签到,获得积分10
11秒前
微生完成签到 ,获得积分10
11秒前
12秒前
chhzz完成签到 ,获得积分10
13秒前
飞舞伤寒发布了新的文献求助20
13秒前
曾珍发布了新的文献求助10
15秒前
qwe完成签到,获得积分10
16秒前
Xdz完成签到 ,获得积分10
16秒前
cai完成签到 ,获得积分10
19秒前
雨恋凡尘完成签到,获得积分0
22秒前
羊羔肉完成签到,获得积分10
24秒前
胖丁完成签到,获得积分10
24秒前
笨笨凡松完成签到,获得积分10
27秒前
飞舞伤寒完成签到,获得积分10
27秒前
贝利亚完成签到,获得积分10
29秒前
喜多多的小眼静完成签到 ,获得积分10
29秒前
29秒前
Dsunflower完成签到 ,获得积分10
30秒前
羊羔肉发布了新的文献求助50
31秒前
半夏发布了新的文献求助10
31秒前
32秒前
32秒前
大橙子发布了新的文献求助10
33秒前
星辰大海应助贝利亚采纳,获得10
33秒前
34秒前
sunny心晴完成签到 ,获得积分10
36秒前
独特的凝云完成签到 ,获得积分10
36秒前
TheDing完成签到,获得积分10
37秒前
传奇3应助lenetivy采纳,获得10
39秒前
积极的忆曼完成签到,获得积分10
40秒前
量子星尘发布了新的文献求助10
40秒前
酒剑仙完成签到,获得积分10
40秒前
YANGMJ完成签到,获得积分10
41秒前
xialuoke完成签到,获得积分10
41秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022