A paradigm shift in processing large UAV image datasets for emergency management of natural hazards

工作流程 计算机科学 摄影测量学 大洪水 软件部署 人工智能 实时计算 数据挖掘 数据科学 地理 数据库 软件工程 考古
作者
Marco La Salandra,S. Nicotri,Giacinto Donvito,Alessandro Italiano,Rosa Colacicco,Giorgia Miniello,Isabella Lapietra,Rodolfo Roseto,Pierfrancesco Dellino,Domenico Capolongo
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:132: 103996-103996
标识
DOI:10.1016/j.jag.2024.103996
摘要

Over the past two decades, natural hazards have claimed the lives of tens of thousands of people worldwide, every year. Unmanned Aerial Vehicles (UAVs) are pivotal in natural hazard management, offering rapid deployment, flexibility, and cost-effectiveness. Advances such as Beyond Visual Line Of Sight (BVLOS) missions, swarm surveying, Artificial Intelligence (AI), edge-computing, and Structure from Motion (SfM) photogrammetry enhance their high-resolution spatiotemporal data capabilities, but the need for large datasets poses challenges in terms of storage, computational resources and, especially, processing time. This work introduces an original high-performance UAV photogrammetry workflow through the implementation of an open-source distributed approach using the ReCaS-Bari HPC cluster. Performance tests of the workflow, that includes computing parallelism, GPU usage, and hybrid bundle adjustment, demonstrate a significant reduction in processing time for large UAV image datasets. The workflow outperformed current methods, reducing processing time from 908 down to 104 min for 2,691 images and handling 11,549 images in just 7.8 h (a 70 % improvement over leading commercial software). Comparative analysis with cluster-based state-of-the-art approaches revealed noteworthy reductions, reaching up to 86 % for about 7,000 images. A case study, focusing on the Basento river (Southern Italy) flood event occurred in May 2023, proved the workflow practical implications in emergency management. A change detection assessment facilitated the identification and quantification of flood-induced morphological alterations along a 3 km of river reach length within about 3 h. The results highlight the workflow utility in providing accurate and near real-time information for emergency management, enhancing situational awareness and facilitating informed decision-making during disastrous events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助聪慧的香魔采纳,获得10
刚刚
3秒前
城南她似海完成签到 ,获得积分10
4秒前
眯眯眼的仇天完成签到 ,获得积分10
4秒前
快来拾糖完成签到 ,获得积分10
7秒前
我是老大应助月宸采纳,获得10
7秒前
爆米花应助龙研采纳,获得10
7秒前
9秒前
seven发布了新的文献求助10
11秒前
白鸽鸽发布了新的文献求助10
13秒前
风语村发布了新的文献求助10
15秒前
16秒前
田様应助seven采纳,获得10
17秒前
19秒前
ella完成签到,获得积分20
22秒前
23秒前
23秒前
斯文白梦完成签到 ,获得积分10
23秒前
简单的八宝粥完成签到,获得积分10
23秒前
25秒前
大意的绿蓉完成签到,获得积分10
27秒前
gu发布了新的文献求助10
28秒前
29秒前
聪慧的香魔关注了科研通微信公众号
29秒前
livra1058完成签到,获得积分10
29秒前
30秒前
彭三忘发布了新的文献求助10
31秒前
Wanyin完成签到,获得积分10
32秒前
GC完成签到,获得积分10
33秒前
33秒前
super chan发布了新的文献求助10
36秒前
Tink完成签到,获得积分10
37秒前
April发布了新的文献求助10
38秒前
爆米花应助爱上人家四月采纳,获得10
38秒前
目土土发布了新的文献求助10
39秒前
州州完成签到,获得积分10
39秒前
禾盒发布了新的文献求助10
40秒前
上彐下火完成签到 ,获得积分10
41秒前
41秒前
gzj发布了新的文献求助10
41秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673567
求助须知:如何正确求助?哪些是违规求助? 3229137
关于积分的说明 9784287
捐赠科研通 2939726
什么是DOI,文献DOI怎么找? 1611252
邀请新用户注册赠送积分活动 760877
科研通“疑难数据库(出版商)”最低求助积分说明 736296