A paradigm shift in processing large UAV image datasets for emergency management of natural hazards

工作流程 计算机科学 摄影测量学 大洪水 软件部署 人工智能 实时计算 数据挖掘 数据科学 地理 数据库 软件工程 考古
作者
Marco La Salandra,S. Nicotri,Giacinto Donvito,Alessandro Italiano,Rosa Colacicco,Giorgia Miniello,Isabella Lapietra,Rodolfo Roseto,Pierfrancesco Dellino,Domenico Capolongo
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:132: 103996-103996
标识
DOI:10.1016/j.jag.2024.103996
摘要

Over the past two decades, natural hazards have claimed the lives of tens of thousands of people worldwide, every year. Unmanned Aerial Vehicles (UAVs) are pivotal in natural hazard management, offering rapid deployment, flexibility, and cost-effectiveness. Advances such as Beyond Visual Line Of Sight (BVLOS) missions, swarm surveying, Artificial Intelligence (AI), edge-computing, and Structure from Motion (SfM) photogrammetry enhance their high-resolution spatiotemporal data capabilities, but the need for large datasets poses challenges in terms of storage, computational resources and, especially, processing time. This work introduces an original high-performance UAV photogrammetry workflow through the implementation of an open-source distributed approach using the ReCaS-Bari HPC cluster. Performance tests of the workflow, that includes computing parallelism, GPU usage, and hybrid bundle adjustment, demonstrate a significant reduction in processing time for large UAV image datasets. The workflow outperformed current methods, reducing processing time from 908 down to 104 min for 2,691 images and handling 11,549 images in just 7.8 h (a 70 % improvement over leading commercial software). Comparative analysis with cluster-based state-of-the-art approaches revealed noteworthy reductions, reaching up to 86 % for about 7,000 images. A case study, focusing on the Basento river (Southern Italy) flood event occurred in May 2023, proved the workflow practical implications in emergency management. A change detection assessment facilitated the identification and quantification of flood-induced morphological alterations along a 3 km of river reach length within about 3 h. The results highlight the workflow utility in providing accurate and near real-time information for emergency management, enhancing situational awareness and facilitating informed decision-making during disastrous events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐xmr完成签到,获得积分10
刚刚
minus完成签到,获得积分10
1秒前
maaicui完成签到,获得积分10
1秒前
五十完成签到,获得积分10
1秒前
英勇夜绿发布了新的文献求助10
1秒前
时尚的初柔完成签到,获得积分10
1秒前
高挑的小蕊完成签到,获得积分10
2秒前
huifang完成签到,获得积分10
2秒前
2秒前
怡然的烤鸡完成签到,获得积分10
2秒前
摸鱼校尉完成签到,获得积分0
2秒前
开朗的山彤完成签到,获得积分10
3秒前
Amber完成签到,获得积分10
3秒前
SYLH应助ernest采纳,获得30
3秒前
Rr完成签到,获得积分10
4秒前
美丽萝莉完成签到,获得积分10
4秒前
by6868完成签到,获得积分10
5秒前
平常的不评完成签到,获得积分10
5秒前
光亮藏鸟完成签到 ,获得积分10
5秒前
天天快乐应助小蚂蚁采纳,获得10
5秒前
yidashi完成签到,获得积分10
6秒前
6秒前
高贵的往事完成签到,获得积分10
7秒前
早点睡吧完成签到,获得积分10
7秒前
7秒前
科研通AI2S应助安诺采纳,获得10
7秒前
莫名其妙发布了新的文献求助10
8秒前
orixero应助追光者采纳,获得10
8秒前
梅子完成签到 ,获得积分10
8秒前
一颗柚子完成签到,获得积分10
9秒前
五十一笑声完成签到,获得积分10
9秒前
9秒前
七色光完成签到,获得积分10
9秒前
lixin完成签到,获得积分10
10秒前
lli完成签到,获得积分10
10秒前
耳机分你一只诺完成签到,获得积分10
10秒前
鲤鱼完成签到 ,获得积分10
10秒前
荧光绿土豆泥完成签到,获得积分10
11秒前
孙文杰完成签到 ,获得积分10
12秒前
BILNQPL发布了新的文献求助10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968719
求助须知:如何正确求助?哪些是违规求助? 3513608
关于积分的说明 11168681
捐赠科研通 3248960
什么是DOI,文献DOI怎么找? 1794573
邀请新用户注册赠送积分活动 875194
科研通“疑难数据库(出版商)”最低求助积分说明 804716