A paradigm shift in processing large UAV image datasets for emergency management of natural hazards

工作流程 计算机科学 摄影测量学 大洪水 软件部署 人工智能 实时计算 数据挖掘 数据科学 地理 数据库 软件工程 考古
作者
Marco La Salandra,S. Nicotri,Giacinto Donvito,Alessandro Italiano,Rosa Colacicco,Giorgia Miniello,Isabella Lapietra,Rodolfo Roseto,Pierfrancesco Dellino,Domenico Capolongo
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:132: 103996-103996
标识
DOI:10.1016/j.jag.2024.103996
摘要

Over the past two decades, natural hazards have claimed the lives of tens of thousands of people worldwide, every year. Unmanned Aerial Vehicles (UAVs) are pivotal in natural hazard management, offering rapid deployment, flexibility, and cost-effectiveness. Advances such as Beyond Visual Line Of Sight (BVLOS) missions, swarm surveying, Artificial Intelligence (AI), edge-computing, and Structure from Motion (SfM) photogrammetry enhance their high-resolution spatiotemporal data capabilities, but the need for large datasets poses challenges in terms of storage, computational resources and, especially, processing time. This work introduces an original high-performance UAV photogrammetry workflow through the implementation of an open-source distributed approach using the ReCaS-Bari HPC cluster. Performance tests of the workflow, that includes computing parallelism, GPU usage, and hybrid bundle adjustment, demonstrate a significant reduction in processing time for large UAV image datasets. The workflow outperformed current methods, reducing processing time from 908 down to 104 min for 2,691 images and handling 11,549 images in just 7.8 h (a 70 % improvement over leading commercial software). Comparative analysis with cluster-based state-of-the-art approaches revealed noteworthy reductions, reaching up to 86 % for about 7,000 images. A case study, focusing on the Basento river (Southern Italy) flood event occurred in May 2023, proved the workflow practical implications in emergency management. A change detection assessment facilitated the identification and quantification of flood-induced morphological alterations along a 3 km of river reach length within about 3 h. The results highlight the workflow utility in providing accurate and near real-time information for emergency management, enhancing situational awareness and facilitating informed decision-making during disastrous events.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助傲安采纳,获得20
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
Michelle完成签到,获得积分10
1秒前
1秒前
2秒前
摇摆小狗发布了新的文献求助10
2秒前
Lillian发布了新的文献求助30
2秒前
2秒前
英姑应助饶天源采纳,获得10
3秒前
3秒前
3秒前
M2106发布了新的文献求助10
3秒前
充电宝应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
香蕉诗蕊应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
5秒前
667788完成签到,获得积分10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
niNe3YUE应助科研通管家采纳,获得10
5秒前
白许四十完成签到,获得积分10
5秒前
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
la完成签到 ,获得积分10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
5秒前
田様应助Pa1mary采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
6秒前
领导范儿应助现代水卉采纳,获得10
6秒前
纽曼发布了新的文献求助10
6秒前
pluto应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得50
6秒前
香蕉诗蕊应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
zqh发布了新的文献求助10
7秒前
可爱的函函应助redamancy采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711456
求助须知:如何正确求助?哪些是违规求助? 5203871
关于积分的说明 15264340
捐赠科研通 4863728
什么是DOI,文献DOI怎么找? 2610906
邀请新用户注册赠送积分活动 1561227
关于科研通互助平台的介绍 1518627