A paradigm shift in processing large UAV image datasets for emergency management of natural hazards

工作流程 计算机科学 摄影测量学 大洪水 软件部署 人工智能 实时计算 数据挖掘 数据科学 地理 数据库 软件工程 考古
作者
Marco La Salandra,S. Nicotri,Giacinto Donvito,Alessandro Italiano,Rosa Colacicco,Giorgia Miniello,Isabella Lapietra,Rodolfo Roseto,Pierfrancesco Dellino,Domenico Capolongo
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:132: 103996-103996
标识
DOI:10.1016/j.jag.2024.103996
摘要

Over the past two decades, natural hazards have claimed the lives of tens of thousands of people worldwide, every year. Unmanned Aerial Vehicles (UAVs) are pivotal in natural hazard management, offering rapid deployment, flexibility, and cost-effectiveness. Advances such as Beyond Visual Line Of Sight (BVLOS) missions, swarm surveying, Artificial Intelligence (AI), edge-computing, and Structure from Motion (SfM) photogrammetry enhance their high-resolution spatiotemporal data capabilities, but the need for large datasets poses challenges in terms of storage, computational resources and, especially, processing time. This work introduces an original high-performance UAV photogrammetry workflow through the implementation of an open-source distributed approach using the ReCaS-Bari HPC cluster. Performance tests of the workflow, that includes computing parallelism, GPU usage, and hybrid bundle adjustment, demonstrate a significant reduction in processing time for large UAV image datasets. The workflow outperformed current methods, reducing processing time from 908 down to 104 min for 2,691 images and handling 11,549 images in just 7.8 h (a 70 % improvement over leading commercial software). Comparative analysis with cluster-based state-of-the-art approaches revealed noteworthy reductions, reaching up to 86 % for about 7,000 images. A case study, focusing on the Basento river (Southern Italy) flood event occurred in May 2023, proved the workflow practical implications in emergency management. A change detection assessment facilitated the identification and quantification of flood-induced morphological alterations along a 3 km of river reach length within about 3 h. The results highlight the workflow utility in providing accurate and near real-time information for emergency management, enhancing situational awareness and facilitating informed decision-making during disastrous events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akiba完成签到,获得积分10
刚刚
完美世界应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
Wianiu应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
宇宙法完成签到,获得积分10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
斯文明杰发布了新的文献求助10
3秒前
天天快乐应助勾晓彤采纳,获得10
3秒前
3秒前
Profeto应助胡先生的小口袋采纳,获得10
4秒前
Profeto应助胡先生的小口袋采纳,获得10
5秒前
科研q完成签到 ,获得积分10
5秒前
5秒前
5秒前
Ava应助zhuzhu采纳,获得10
5秒前
5秒前
节步青发布了新的文献求助10
7秒前
小邢发布了新的文献求助10
7秒前
桐桐应助端庄煎饼采纳,获得10
8秒前
里大炮发布了新的文献求助10
9秒前
wozai发布了新的文献求助10
9秒前
社会主义接班人完成签到,获得积分10
9秒前
高贵梦秋发布了新的文献求助10
10秒前
搜集达人应助1111采纳,获得10
11秒前
研友_VZG7GZ应助llzuo采纳,获得10
11秒前
12秒前
HH完成签到,获得积分10
12秒前
华仔应助wozai采纳,获得10
13秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215597
求助须知:如何正确求助?哪些是违规求助? 4390701
关于积分的说明 13670504
捐赠科研通 4252590
什么是DOI,文献DOI怎么找? 2333220
邀请新用户注册赠送积分活动 1330838
关于科研通互助平台的介绍 1284652