已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Chemical composition prediction in goji (Lycium barbarum) using hyperspectral imaging and multi-task 1DCNN with attention mechanism

高光谱成像 枸杞 偏最小二乘回归 卷积神经网络 计算机科学 人工智能 任务(项目管理) 生物系统 光学(聚焦) 模式识别(心理学) 机器学习 数学 生物 工程类 物理 医学 替代医学 病理 系统工程 光学
作者
Huiqiang Hu,Yunlong Mei,Yunpeng Wei,Zhenyu Xu,Yuping Zhao,Huaxing Xu,Xiaobo Mao,Luqi Huang
出处
期刊:Lebensmittel-Wissenschaft & Technologie [Elsevier BV]
卷期号:204: 116436-116436 被引量:33
标识
DOI:10.1016/j.lwt.2024.116436
摘要

The bioactive components of goji berries (Lycium barbarum) are crucial determinants of their nutritional and commercial value. In this study, we combined hyperspectral imaging technology (HSI) with a one-dimensional convolutional neural network (1DCNN) to predict the content of chemical compositions in goji. To enhance the model's ability to focus on relevant information, we introduced the channel attention module (CAM), spectral attention module (SAM) and fused them together, which can focus on output features of the convolution kernels differently and adaptively emphasize more effective spectral bands, respectively. Moreover, considering the limitations of traditional single-task prediction methods and the inherent correlations among different constituents, we employed a multi-task CNN for the simultaneous prediction of various goji constituents. The results indicate that the attention-enhanced 1DCNN model outperforms both the partial least squares regression (PLSR) model and the vanilla 1DCNN. With multi-task learning, the model achieves optimal performance, achieving an average R2 of 0.9435 for the prediction of the three components. Our research develops an efficient and accurate method for predicting the constituents of goji berries, providing a valuable, convenient, and effective tool for assessing and detecting the quality of fruit products in the food industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
浮游应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得30
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
浮游应助科研通管家采纳,获得10
2秒前
燕海雪完成签到,获得积分10
2秒前
hann完成签到,获得积分10
3秒前
Jasper应助Yian采纳,获得10
3秒前
7秒前
hann发布了新的文献求助10
8秒前
8秒前
清风_breeze发布了新的文献求助10
13秒前
16秒前
李琼琼发布了新的文献求助10
16秒前
寇博翔发布了新的文献求助10
17秒前
一吨好运完成签到,获得积分20
17秒前
JPH1990应助清风_breeze采纳,获得10
17秒前
科研通AI2S应助無期采纳,获得10
18秒前
19秒前
大大完成签到,获得积分10
19秒前
YaoHui发布了新的文献求助10
22秒前
lyw发布了新的文献求助10
22秒前
科研通AI6应助寇博翔采纳,获得10
25秒前
yumiao发布了新的文献求助10
26秒前
华仔应助vayne采纳,获得10
26秒前
dajiejie发布了新的文献求助10
26秒前
nenoaowu发布了新的文献求助10
27秒前
29秒前
31秒前
bkagyin应助nenoaowu采纳,获得10
31秒前
ZJX应助MyAI采纳,获得10
33秒前
33秒前
自然的铅笔完成签到 ,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252897
求助须知:如何正确求助?哪些是违规求助? 4416496
关于积分的说明 13749852
捐赠科研通 4288649
什么是DOI,文献DOI怎么找? 2353022
邀请新用户注册赠送积分活动 1349787
关于科研通互助平台的介绍 1309434