清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Chemical composition prediction in goji (Lycium barbarum) using hyperspectral imaging and multi-task 1DCNN with attention mechanism

高光谱成像 枸杞 偏最小二乘回归 卷积神经网络 计算机科学 人工智能 任务(项目管理) 生物系统 光学(聚焦) 模式识别(心理学) 机器学习 数学 生物 工程类 物理 病理 光学 系统工程 替代医学 医学
作者
Huiqiang Hu,Yunlong Mei,Yunpeng Wei,Zhenyu Xu,Yuping Zhao,Huaxing Xu,Xiaobo Mao,Luqi Huang
出处
期刊:Lebensmittel-Wissenschaft & Technologie [Elsevier BV]
卷期号:204: 116436-116436 被引量:7
标识
DOI:10.1016/j.lwt.2024.116436
摘要

The bioactive components of goji berries (Lycium barbarum) are crucial determinants of their nutritional and commercial value. In this study, we combined hyperspectral imaging technology (HSI) with a one-dimensional convolutional neural network (1DCNN) to predict the content of chemical compositions in goji. To enhance the model's ability to focus on relevant information, we introduced the channel attention module (CAM), spectral attention module (SAM) and fused them together, which can focus on output features of the convolution kernels differently and adaptively emphasize more effective spectral bands, respectively. Moreover, considering the limitations of traditional single-task prediction methods and the inherent correlations among different constituents, we employed a multi-task CNN for the simultaneous prediction of various goji constituents. The results indicate that the attention-enhanced 1DCNN model outperforms both the partial least squares regression (PLSR) model and the vanilla 1DCNN. With multi-task learning, the model achieves optimal performance, achieving an average R2 of 0.9435 for the prediction of the three components. Our research develops an efficient and accurate method for predicting the constituents of goji berries, providing a valuable, convenient, and effective tool for assessing and detecting the quality of fruit products in the food industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月儿完成签到 ,获得积分10
13秒前
南滨完成签到 ,获得积分10
31秒前
yyds完成签到,获得积分10
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
爱窦完成签到 ,获得积分10
1分钟前
1分钟前
juan完成签到 ,获得积分10
2分钟前
谢薇是猪完成签到,获得积分10
2分钟前
清脆的飞丹完成签到,获得积分10
2分钟前
woxinyouyou完成签到,获得积分0
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
开心苠发布了新的文献求助10
3分钟前
4分钟前
拉长的秋白完成签到 ,获得积分10
4分钟前
4分钟前
widesky777完成签到 ,获得积分0
4分钟前
4分钟前
从容的雪碧完成签到,获得积分10
4分钟前
4分钟前
无悔完成签到 ,获得积分10
4分钟前
NexusExplorer应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
Hjz完成签到,获得积分20
5分钟前
coolplex完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
微笑高山完成签到 ,获得积分10
7分钟前
雪山飞龙完成签到,获得积分10
8分钟前
里昂义务完成签到,获得积分10
8分钟前
里昂义务发布了新的文献求助10
8分钟前
光合作用完成签到,获得积分10
8分钟前
fanssw完成签到 ,获得积分10
9分钟前
9分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965722
求助须知:如何正确求助?哪些是违规求助? 3510967
关于积分的说明 11155723
捐赠科研通 3245436
什么是DOI,文献DOI怎么找? 1792920
邀请新用户注册赠送积分活动 874201
科研通“疑难数据库(出版商)”最低求助积分说明 804229