清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

OpenChemIE: An Information Extraction Toolkit for Chemistry Literature

化学 情报检索 萃取(化学) 计算机科学 数据科学 色谱法
作者
Vincent Fan,Yujie Qian,Alex Wang,Amber Wang,Connor W. Coley,Regina Barzilay
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (14): 5521-5534 被引量:1
标识
DOI:10.1021/acs.jcim.4c00572
摘要

Information extraction from chemistry literature is vital for constructing up-to-date reaction databases for data-driven chemistry. Complete extraction requires combining information across text, tables, and figures, whereas prior work has mainly investigated extracting reactions from single modalities. In this paper, we present OpenChemIE to address this complex challenge and enable the extraction of reaction data at the document level. OpenChemIE approaches the problem in two steps: extracting relevant information from individual modalities and then integrating the results to obtain a final list of reactions. For the first step, we employ specialized neural models that each address a specific task for chemistry information extraction, such as parsing molecules or reactions from text or figures. We then integrate the information from these modules using chemistry-informed algorithms, allowing for the extraction of fine-grained reaction data from reaction condition and substrate scope investigations. Our machine learning models attain state-of-the-art performance when evaluated individually, and we meticulously annotate a challenging dataset of reaction schemes with R-groups to evaluate our pipeline as a whole, achieving an F1 score of 69.5%. Additionally, the reaction extraction results of OpenChemIE attain an accuracy score of 64.3% when directly compared against the Reaxys chemical database. OpenChemIE is most suited for information extraction on organic chemistry literature, where molecules are generally depicted as planar graphs or written in text and can be consolidated into a SMILES format. We provide OpenChemIE freely to the public as an open-source package, as well as through a web interface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助帮帮我好吗采纳,获得10
28秒前
慕青应助帮帮我好吗采纳,获得10
1分钟前
1分钟前
cc完成签到 ,获得积分10
1分钟前
1分钟前
斯文败类应助帮帮我好吗采纳,获得10
1分钟前
貔貅完成签到,获得积分10
2分钟前
HL完成签到,获得积分10
2分钟前
搜集达人应助帮帮我好吗采纳,获得10
2分钟前
2分钟前
无限的老九完成签到,获得积分10
2分钟前
ranj完成签到,获得积分10
4分钟前
4分钟前
4分钟前
鳗鱼起眸发布了新的文献求助10
4分钟前
5分钟前
chnz3636发布了新的文献求助10
5分钟前
6分钟前
theseus完成签到,获得积分10
6分钟前
6分钟前
共享精神应助帮帮我好吗采纳,获得10
7分钟前
7分钟前
7分钟前
8分钟前
8分钟前
8分钟前
9分钟前
9分钟前
9分钟前
9分钟前
冬去春来完成签到 ,获得积分10
10分钟前
Jasper应助枯藤老柳树采纳,获得30
10分钟前
酷波er应助帮帮我好吗采纳,获得10
10分钟前
10分钟前
10分钟前
科研通AI2S应助白华苍松采纳,获得10
10分钟前
11分钟前
11分钟前
11分钟前
11分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137021
求助须知:如何正确求助?哪些是违规求助? 2787992
关于积分的说明 7784214
捐赠科研通 2444073
什么是DOI,文献DOI怎么找? 1299719
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600997