Fe, Co-induced hydrolysis to prepare α-Ni (OH)2/β-Ni(OH)2 interfaces for improved overall water splitting efficiency

水解 分解水 化学 无机化学 材料科学 核化学 化学工程 催化作用 有机化学 工程类 光催化
作者
Guoxu Zhou,Zining Wang,Xichun Zhang,Shan Ji,Rongfang Wang,Xianguo Ma,Xuyun Wang,Vladimir Linkov,Hui Wang
出处
期刊:Electrochimica Acta [Elsevier]
卷期号:496: 144484-144484
标识
DOI:10.1016/j.electacta.2024.144484
摘要

The development of effective bifunctional electrode materials is necessary for worldwide adoption of large-scale hydrogen production by water electrolysis. Nickel hydroxide - based transition metal materials are among the most promising electrodes for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). While Ni(OH)2 exists in two crystalline states, namely α-Ni(OH)2 and β-Ni(OH)2, neither can meet requirements for effective bifunctional electrode materials on their own, due to relatively low catalytic activity. In this study, bifunctional catalysts with α-Ni(OH)2/β-Ni(OH)2 interfaces, prepared using Fe, Co-induced hydrolysis, have been successfully applied for electrolytic water splitting. According to physical characterization, Fe3+ and Co2+ are incorporated into Ni(OH)2 layers, where Fe doping leads to the formation of a regular flake structure, while Co doping facilitates surface electron transfer, enhancing electrocatalytic activity towards HER and OER. Overpotentials of the obtained catalysts at 100 mA·cm−2 are as low as 224 mV for HER and 324 mV for OER. Both HER and OER overpotentials remained almost unchanged after 24 h operation at a high current density of 1 A·cm−2, demonstrating excellent stability of the newly prepared materials during water electrolysis. The synthesis of α-Ni(OH)2/β-Ni(OH)2 interfaces is a new direction for the manufacturing of industrially applicable water splitting electrocatalysts suitable for high current density operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
研友_VZG7GZ应助gaos采纳,获得10
刚刚
内向青文发布了新的文献求助10
刚刚
克林沙星完成签到,获得积分10
刚刚
1秒前
杜嘟嘟发布了新的文献求助10
1秒前
kento驳回了欢欢应助
1秒前
2秒前
Ava应助李双艳采纳,获得10
2秒前
wfy1227完成签到,获得积分10
2秒前
Nefelibata完成签到,获得积分10
2秒前
搜集达人应助Elaine采纳,获得10
2秒前
舒适念真发布了新的文献求助10
3秒前
Clean发布了新的文献求助10
3秒前
3秒前
佰斯特威发布了新的文献求助10
3秒前
gms完成签到,获得积分10
3秒前
大力的含卉完成签到,获得积分10
4秒前
科研小白发布了新的文献求助10
4秒前
机灵又蓝完成签到 ,获得积分10
4秒前
xiaxiao应助旧梦如烟采纳,获得100
4秒前
111发布了新的文献求助10
4秒前
5秒前
6秒前
rstorz完成签到,获得积分10
6秒前
wzxxxx发布了新的文献求助10
7秒前
方方方方神完成签到,获得积分20
7秒前
WiLDPiG433完成签到,获得积分10
7秒前
8秒前
Jasper应助椰子采纳,获得10
8秒前
Stormi发布了新的文献求助10
8秒前
jym发布了新的文献求助10
8秒前
8秒前
Maigret完成签到,获得积分10
9秒前
两飞飞完成签到,获得积分10
9秒前
9秒前
韭菜盒子发布了新的文献求助10
10秒前
ximu完成签到,获得积分20
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740