清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Pooling and Boosting for Demand Prediction in Retail: A Transfer Learning Approach

联营 计算机科学 利用 Boosting(机器学习) 梯度升压 杠杆(统计) 可扩展性 计量经济学 机器学习 人工智能 随机森林 经济 计算机安全 数据库
作者
Dazhou Lei,Yongzhi Qi,Sheng Liu,Dongyang Geng,Jianshen Zhang,Hao Hu,Zuo‐Jun Max Shen
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/msom.2022.0453
摘要

Problem definition: How should retailers leverage aggregate (category) sales information for individual product demand prediction? Motivated by inventory risk pooling, we develop a new prediction framework that integrates category-product sales information to exploit the benefit of pooling. Methodology/results: We propose to combine data from different aggregation levels in a transfer learning framework. Our approach treats the top-level sales information as a regularization for fitting the bottom-level prediction model. We characterize the error performance of our model in linear cases and demonstrate the benefit of pooling. Moreover, our approach exploits a natural connection to regularized gradient boosting trees that enable a scalable implementation for large-scale applications. Based on an internal study with JD.com on more than 6,000 weekly observations between 2020 and 2021, we evaluate the out-of-sample forecasting performance of our approach against state-of-the-art benchmarks. The result shows that our approach delivers superior forecasting performance consistently with more than 9% improvement over the benchmark method of JD.com . We further validate its generalizability on a Walmart retail data set and through alternative pooling and prediction methods. Managerial implications: Using aggregate sales information directly may not help with product demand prediction. Our result highlights the value of transfer learning to demand prediction in retail with both theoretical and empirical support. Based on a conservative estimate of JD.com , the improved forecasts can reduce the operating cost by 0.01–0.29 renminbi (RMB) per sold unit on the retail platform, which implies significant cost savings for the low-margin e-retail business. History: This paper has been accepted as part of the 2023 Manufacturing & Service Operations Management Practice-Based Research Competition. Funding: This work was supported by the National Natural Science Foundation of China [Grant 71991462]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2022.0453 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fishss完成签到 ,获得积分10
5秒前
13秒前
Perry发布了新的文献求助10
19秒前
ldjldj_2004完成签到 ,获得积分10
30秒前
虚幻泽洋完成签到,获得积分10
47秒前
Barid完成签到,获得积分10
53秒前
草木完成签到,获得积分10
55秒前
apckkk完成签到 ,获得积分10
58秒前
曲夜白完成签到 ,获得积分10
58秒前
丹妮完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
back you up应助科研通管家采纳,获得20
1分钟前
今天开心吗完成签到 ,获得积分10
2分钟前
kimky发布了新的文献求助10
2分钟前
LZQ完成签到,获得积分10
2分钟前
桂花完成签到 ,获得积分10
2分钟前
2分钟前
泽风发布了新的文献求助30
2分钟前
LZQ发布了新的文献求助20
2分钟前
小二郎应助泽风采纳,获得150
2分钟前
忘忧Aquarius完成签到,获得积分10
3分钟前
所得皆所愿完成签到 ,获得积分10
3分钟前
GIPCY完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
orixero应助科研通管家采纳,获得10
3分钟前
back you up应助科研通管家采纳,获得30
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
qq完成签到 ,获得积分10
3分钟前
liguanyu1078完成签到,获得积分10
4分钟前
lixuebin完成签到 ,获得积分10
4分钟前
颜陌完成签到,获得积分10
4分钟前
LOST完成签到 ,获得积分10
4分钟前
clairevox完成签到,获得积分10
4分钟前
gincle完成签到 ,获得积分10
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
binyao2024完成签到,获得积分10
6分钟前
pyrene完成签到 ,获得积分10
6分钟前
kyle完成签到 ,获得积分10
6分钟前
光合作用完成签到,获得积分10
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671283
求助须知:如何正确求助?哪些是违规求助? 3228146
关于积分的说明 9778630
捐赠科研通 2938406
什么是DOI,文献DOI怎么找? 1610009
邀请新用户注册赠送积分活动 760503
科研通“疑难数据库(出版商)”最低求助积分说明 736003