清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Feasibility Study of Denoising Instrumental Noise of Raw SOV-DAS Data with Deep Learning

降噪 计算机科学 噪音(视频) 人工智能 原始数据 深度学习 噪声测量 计算机视觉 语音识别 模式识别(心理学) 图像(数学) 程序设计语言
作者
BumChul Yoon,Olivia Collet,Roman Isaenkov,Pavel Shashkin,Soon-Nyean Cheong,Roman Pevzner,Yejin Park
标识
DOI:10.3997/2214-4609.202410954
摘要

Summary This study explores the potential of using deep learning to denoise raw Surface Orbital Vibrator-Distributed Acoustic Sensing (SOV-DAS) data in geophysical applications. Distributed Acoustic Sensing (DAS) has gained prominence for its cost-effectiveness and high spatial density in seismic monitoring. However, the risk of noise-signal mixture during data processing remains a challenge. The research begins by detailing the mechanics of SOV-DAS data processing, highlighting the need for deconvolution and the risk of signal-noise mixtures. To address this challenge, a Noise2Noise (N2N) deep learning model is applied for denoising before deconvolution. The study uses data from a CO2 injection experiment conducted at OTIC in 2021. Results show that the N2N approach effectively attenuates high-frequency noise in the SOV-DAS dataset, improving the Signal-to-Noise Ratio (SNR) and data quality. Deconvolution of denoised data enhances the contrast between signals and noise, outperforming stack gathering methods. In conclusion, this research demonstrates the feasibility of denoising instrumental noise in raw SOV-DAS data using deep learning. The denoising process leads to enhanced data quality, increased SNR, and potential efficiency gains in data acquisition and processing. This approach holds promise for improving 4D time-lapse monitoring in geophysical applications, offering valuable insights for researchers and practitioners in the field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
15秒前
wuludie应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
我是老大应助科研通管家采纳,获得10
15秒前
wuludie应助科研通管家采纳,获得10
15秒前
wuludie应助科研通管家采纳,获得10
15秒前
热心芷雪完成签到,获得积分10
23秒前
小马甲应助George采纳,获得10
24秒前
科研通AI2S应助crazy采纳,获得10
24秒前
awu完成签到 ,获得积分10
33秒前
智者雨人完成签到 ,获得积分10
45秒前
炳灿完成签到 ,获得积分10
49秒前
1分钟前
KINGAZX完成签到 ,获得积分10
1分钟前
予秋完成签到,获得积分10
1分钟前
予秋发布了新的文献求助10
1分钟前
Jayzie完成签到 ,获得积分10
1分钟前
friend516完成签到 ,获得积分10
2分钟前
深情安青应助HXZR0924采纳,获得10
2分钟前
huiluowork完成签到 ,获得积分10
2分钟前
白斯特完成签到,获得积分10
2分钟前
yiyixt完成签到 ,获得积分10
2分钟前
widesky777完成签到 ,获得积分0
2分钟前
wuludie应助科研通管家采纳,获得10
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
iamzhangly30hyit完成签到 ,获得积分10
2分钟前
文献搬运工完成签到 ,获得积分10
2分钟前
lpp完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
George发布了新的文献求助10
2分钟前
HXZR0924发布了新的文献求助10
2分钟前
wang5945完成签到 ,获得积分10
3分钟前
液晶屏99完成签到,获得积分10
3分钟前
3分钟前
001完成签到,获得积分10
3分钟前
就好完成签到 ,获得积分10
3分钟前
Akim应助HXZR0924采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664623
求助须知:如何正确求助?哪些是违规求助? 4866702
关于积分的说明 15108196
捐赠科研通 4823260
什么是DOI,文献DOI怎么找? 2582164
邀请新用户注册赠送积分活动 1536238
关于科研通互助平台的介绍 1494619