亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SSVEP detection assessment by combining visual stimuli paradigms and no-training detection methods

棋盘 脑-机接口 计算机科学 脑电图 刺激(心理学) 诱发电位 视觉诱发电位 模式识别(心理学) 人工智能 集合(抽象数据类型) 语音识别 心理学 神经科学 数学 认知心理学 几何学 程序设计语言
作者
Juan David Chailloux Peguero,Luis G. Hernández-Rojas,Omar Mendoza-Montoya,Ricardo Caraza,Javier M. Antelis
出处
期刊:Frontiers in Neuroscience [Frontiers Media SA]
卷期号:17 被引量:4
标识
DOI:10.3389/fnins.2023.1142892
摘要

Brain-Computer Interfaces (BCI) based on Steady-State Visually Evoked Potentials (SSVEP) have great potential for use in communication applications because of their relatively simple assembly and in some cases the possibility of bypassing the time-consuming training stage. However, among multiple factors, the efficient performance of this technology is highly dependent on the stimulation paradigm applied in combination with the SSVEP detection algorithm employed. This paper proposes the performance assessment of the classification of target events with respect to non-target events by applying four types of visual paradigms, rectangular modulated On-Off (OOR), sinusoidal modulated On-Off (OOS), rectangular modulated Checkerboard (CBR), and sinusoidal modulated Checkerboard (CBS), with three types of SSVEP detection methods, Canonical Correlation Analysis (CCA), Filter-Bank CCA (FBCCA), and Minimum Energy Combination (MEC).We set up an experimental protocol in which the four types of visual stimuli were presented randomly to twenty-seven participants and after acquiring their electroencephalographic responses to five stimulation frequencies (8.57, 10.909, 15, 20, and 24 Hz), the three detection methods were applied to the collected data.The results are conclusive, obtaining the best performance with the combination of either OOR or OOS visual stimulus and the FBCCA as a detection method, however, this finding contrasts with the opinion of almost half of the participants in terms of visual comfort, where the 51.9% of the subjects felt more comfortable and focused with CBR or CBS stimulation.Finally, the EEG recordings correspond to the SSVEP response of 27 subjects to four visual paradigms when selecting five items on a screen, which is useful in BCI navigation applications. The dataset is available to anyone interested in studying and evaluating signal processing and machine-learning algorithms for SSVEP-BCI systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
程风破浪完成签到,获得积分10
3秒前
鹏程万里完成签到,获得积分10
6秒前
可爱的函函应助科研小白采纳,获得10
7秒前
11秒前
16秒前
悄悄拔尖儿完成签到 ,获得积分10
17秒前
19秒前
科研小白发布了新的文献求助10
24秒前
源源源完成签到 ,获得积分10
30秒前
长情黄蜂发布了新的文献求助10
33秒前
FashionBoy应助zf2023采纳,获得10
35秒前
35秒前
41秒前
Drxie发布了新的文献求助10
46秒前
英俊的铭应助AA采纳,获得10
47秒前
一夜很静应助蔡从安采纳,获得10
55秒前
一夜很静应助蔡从安采纳,获得10
55秒前
香蕉觅云应助yuebaoji采纳,获得10
55秒前
55秒前
赘婿应助刘泽千采纳,获得30
59秒前
AA发布了新的文献求助10
59秒前
gaw2008完成签到,获得积分10
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
1分钟前
蔡从安完成签到,获得积分20
1分钟前
yuebaoji发布了新的文献求助10
1分钟前
1分钟前
1分钟前
zf2023发布了新的文献求助10
1分钟前
思源应助陌上花开采纳,获得10
1分钟前
刘泽千完成签到,获得积分10
1分钟前
梦回发布了新的文献求助80
1分钟前
1分钟前
1分钟前
1分钟前
伊笙完成签到 ,获得积分10
1分钟前
zf2023完成签到,获得积分10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561907
求助须知:如何正确求助?哪些是违规求助? 3135489
关于积分的说明 9412388
捐赠科研通 2835888
什么是DOI,文献DOI怎么找? 1558793
邀请新用户注册赠送积分活动 728452
科研通“疑难数据库(出版商)”最低求助积分说明 716832