金属间化合物
化学
电催化剂
燃料电池
阴极
催化作用
纳米颗粒
氧气
化学工程
纳米技术
电化学
电极
物理化学
材料科学
生物化学
工程类
有机化学
合金
作者
Guang Feng,Fanghua Ning,Yue Pan,Tao Chen,Song Jin,Yucheng Wang,Ruqiang Zou,Dong Su,Dingguo Xia
摘要
High-entropy solid-solution alloys have generated significant interest in energy conversion technologies. However, structurally ordered high-entropy intermetallic (HEI) nanoparticles (NPs) have been rarely reported in electrocatalysis applications. Here, we demonstrate structurally ordered PtIrFeCoCu HEI (PIFCC-HEI) NPs with extremely superior performance for both oxygen reduction reaction (ORR) and H2/O2 fuel cells. The PIFCC-HEI NPs show an average diameter of 6 nm. Atomic structural characterizations including atomic-resolution energy-dispersive spectroscopy (EDS) mapping technology confirm the ordered intermetallic structure of PIFCC-HEI NPs. As an electrocatalyst for ORR, the PIFCC-HEI/C achieves an ultrahigh mass activity of 7.14 A mgnoble metals-1 at 0.85 V and extraordinary durability over 60 000 potential cycles. Moreover, the fuel cell assembled with PIFCC-HEI/C as the cathode delivers an ultrahigh peak power density of 1.73 W cm-2 at a back pressure of 1.0 bar and almost no working voltage decay after 80 h operation, certifying the top-level performance among reported fuel cells. Theoretical calculations combined with experimental results reveal that the superior performance of PIFCC-HEI/C for ORR and fuel cells is attributed to its ultrahigh-activity facets. Especially, the (001) facet affords the lowest activation barriers for the rate-limiting step, the optimal downshift of the d-band center, and more efficient regulation of electron structures for ORR. This work not only opens up a new avenue for the fabrication of high-activity facets in the catalysts but also highlights structurally ordered HEI NPs as sufficiently effective catalysts in practical fuel cells and other potential energy-related applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI