亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MS-ACGAN: A modified auxiliary classifier generative adversarial network for schizophrenia's samples augmentation based on microarray gene expression data

计算机科学 机器学习 人工智能 稳健性(进化) 分类器(UML) 数据挖掘 生成模型 深度学习 生成语法 生物化学 基因 化学
作者
Bahareh Jahanyar,Hamid Tabatabaee,Alireza Rowhanimanesh
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:162: 107024-107024 被引量:9
标识
DOI:10.1016/j.compbiomed.2023.107024
摘要

Artificial intelligence-based models and robust computational methods have expedited the data-to-knowledge trajectory in precision medicine. Although machine learning models have been widely applied in medical data analysis, some barriers are yet to be challenging, such as available biosample shortage, prohibitive costs, rare diseases, and ethical considerations. Transcriptomics, an omics approach that studies gene activities and provides gene expression data such as microarray and RNA-Sequences faces the difficulties of biospecimen collection, particularly for mental disorders, as some psychiatric patients avoid medical care. Microarray data suffers from the low number of available samples, making it challenging to apply machine learning models. However, adversarial generative network (GAN), the hottest paradigm in deep learning, has created unprecedented momentum in data augmentation and efficiently expands datasets. This paper proposes a novel model termed MS-ACGAN, where the generator feeds on a bordered Gaussian distribution. In machine learning, calibration is of utmost importance, which gives insight into model uncertainty and is considered a crucial step toward improving the robustness and reliability of models. Therefore, we apply calibration techniques to classifiers and focus on estimating their probabilities as accurately as possible. Additionally, we present our trustworthy outputs by harnessing confidence intervals that confine the point estimate limitations and report a range of expected values for performance metrics. Both concepts statistically describe the implemented model's reliability in this study. Furthermore, we employ two quantitative measures, GAN-train and GAN-test, to demonstrate that the artificial data generated by our robust approach remarkably resembles the original data characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
泽风发布了新的文献求助150
7秒前
无花果应助泽风采纳,获得10
15秒前
35秒前
39秒前
46秒前
葛力发布了新的文献求助10
52秒前
JamesPei应助葛力采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
共享精神应助heisa采纳,获得10
1分钟前
浅尝离白应助miooo采纳,获得30
2分钟前
miooo发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI5应助liudy采纳,获得10
3分钟前
懵懂的小懒虫完成签到,获得积分10
3分钟前
3分钟前
3分钟前
heisa发布了新的文献求助10
3分钟前
heisa完成签到,获得积分10
3分钟前
诺亚方舟哇哈哈完成签到 ,获得积分0
4分钟前
Aaron完成签到 ,获得积分0
4分钟前
4分钟前
葛力发布了新的文献求助10
4分钟前
4分钟前
liudy发布了新的文献求助10
5分钟前
沫荔完成签到 ,获得积分10
5分钟前
科研通AI5应助liudy采纳,获得10
5分钟前
MchemG应助科研通管家采纳,获得10
5分钟前
MchemG应助科研通管家采纳,获得10
5分钟前
5分钟前
liudy完成签到,获得积分10
5分钟前
liudy发布了新的文献求助10
5分钟前
找文献完成签到 ,获得积分10
6分钟前
葛力发布了新的文献求助100
6分钟前
paperandpen完成签到,获得积分10
6分钟前
科研通AI5应助paperandpen采纳,获得30
7分钟前
上官若男应助Aurora采纳,获得10
7分钟前
7分钟前
cc发布了新的文献求助10
7分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671283
求助须知:如何正确求助?哪些是违规求助? 3228145
关于积分的说明 9778564
捐赠科研通 2938401
什么是DOI,文献DOI怎么找? 1610009
邀请新用户注册赠送积分活动 760503
科研通“疑难数据库(出版商)”最低求助积分说明 735991