Automatic modal identification via eigensystem realization algorithm with improved stabilization diagram technique

情态动词 聚类分析 计算机科学 离群值 鉴定(生物学) 算法 背景(考古学) 子空间拓扑 蒙特卡罗方法 实现(概率) 参数统计 数据挖掘 人工智能 数学 统计 古生物学 化学 植物 高分子化学 生物
作者
Weinlin Feng,Chao-Yuan Wu,Jiyang Fu,Ching‐Tai Ng,Yuncheng He
出处
期刊:Engineering Structures [Elsevier]
卷期号:291: 116449-116449 被引量:7
标识
DOI:10.1016/j.engstruct.2023.116449
摘要

Efficient and automatic identification of modal parameters becomes increasingly important for real-time structural health monitoring (SHM) of civil structures. As spurious modes usually exist as a key problem for most output-based identification methods, great efforts have been made to eliminate them typically via stabilization-diagram techniques. However, the quality of traditional stabilization diagrams depends on preset parameters whose values usually vary from one case to another, which makes the method to be less objective and low efficient. This article proposes an improved stabilization-diagram technique, through combined usage of Monte-Carlo sampling simulation, as well as fuzzy C-means (FCM) clustering and three-stage sifting manipulations. While the Monte-Carlo simulation aims to generate more robust stable-axis, the sifting and clustering manipulations can further remove outliers and discriminate true modal results. The improved stabilization-diagram technique is then applied to two mainstream modal identification methods, i.e., eigensystem realization algorithm (ERA) and stochastic subspace identification (SSI) under the context of both a simulation study on a dynamic system and a field research about a super-tall building. Results through comparison demonstrate that the improved stabilization-diagram technique can facilitate ERA and SSI to identify modal parameters automatically and effectively at a comparably good accuracy. However, ERA outperforms SSI evidently in terms of computational efficiency (upmost 15 times faster), which is attractive for real-time SHM. Parametric analysis has been also conducted to examine detailed performance of ERA aided by the proposed stabilization-diagram technique. Overall, the aforementioned method can be adopted to achieve a good balance between identification effectiveness and computational efficiency in an automatic working pattern, and has application prospect for real-time SHM of civil structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xhl完成签到 ,获得积分10
1秒前
精明的盼雁完成签到,获得积分10
1秒前
竹音完成签到,获得积分10
1秒前
1秒前
Wander_Li完成签到,获得积分10
1秒前
球球完成签到,获得积分20
1秒前
2秒前
浅陌初心完成签到 ,获得积分10
2秒前
fuyibo发布了新的文献求助10
2秒前
2秒前
Chief完成签到,获得积分10
3秒前
波粒海苔发布了新的文献求助10
3秒前
oohQoo完成签到,获得积分10
4秒前
王富贵完成签到,获得积分10
4秒前
Ava应助MabelKKKK采纳,获得10
5秒前
5秒前
领导范儿应助duonicola采纳,获得10
5秒前
学术pig完成签到 ,获得积分10
5秒前
叹千泠完成签到,获得积分10
6秒前
xpd发布了新的文献求助10
6秒前
xz发布了新的文献求助10
7秒前
qi完成签到,获得积分10
7秒前
鲤鱼豪完成签到,获得积分10
7秒前
大力翠阳完成签到,获得积分10
7秒前
shusz完成签到,获得积分10
8秒前
益安完成签到,获得积分10
8秒前
QR完成签到 ,获得积分10
8秒前
1128完成签到,获得积分10
9秒前
9秒前
军军问问张完成签到,获得积分10
10秒前
10秒前
10秒前
科研通AI2S应助ahmin采纳,获得10
11秒前
PePsi完成签到 ,获得积分10
12秒前
12秒前
13秒前
猷鲛发布了新的文献求助10
13秒前
落尘发布了新的文献求助10
13秒前
隐形曼青应助xz采纳,获得10
14秒前
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147102
求助须知:如何正确求助?哪些是违规求助? 2798398
关于积分的说明 7828848
捐赠科研通 2455058
什么是DOI,文献DOI怎么找? 1306576
科研通“疑难数据库(出版商)”最低求助积分说明 627831
版权声明 601565