Automatic modal identification via eigensystem realization algorithm with improved stabilization diagram technique

情态动词 聚类分析 计算机科学 离群值 鉴定(生物学) 算法 背景(考古学) 子空间拓扑 蒙特卡罗方法 实现(概率) 参数统计 数据挖掘 人工智能 数学 统计 生物 古生物学 化学 高分子化学 植物
作者
Weinlin Feng,Chao-Yuan Wu,Jiyang Fu,Ching‐Tai Ng,Yuncheng He
出处
期刊:Engineering Structures [Elsevier BV]
卷期号:291: 116449-116449 被引量:7
标识
DOI:10.1016/j.engstruct.2023.116449
摘要

Efficient and automatic identification of modal parameters becomes increasingly important for real-time structural health monitoring (SHM) of civil structures. As spurious modes usually exist as a key problem for most output-based identification methods, great efforts have been made to eliminate them typically via stabilization-diagram techniques. However, the quality of traditional stabilization diagrams depends on preset parameters whose values usually vary from one case to another, which makes the method to be less objective and low efficient. This article proposes an improved stabilization-diagram technique, through combined usage of Monte-Carlo sampling simulation, as well as fuzzy C-means (FCM) clustering and three-stage sifting manipulations. While the Monte-Carlo simulation aims to generate more robust stable-axis, the sifting and clustering manipulations can further remove outliers and discriminate true modal results. The improved stabilization-diagram technique is then applied to two mainstream modal identification methods, i.e., eigensystem realization algorithm (ERA) and stochastic subspace identification (SSI) under the context of both a simulation study on a dynamic system and a field research about a super-tall building. Results through comparison demonstrate that the improved stabilization-diagram technique can facilitate ERA and SSI to identify modal parameters automatically and effectively at a comparably good accuracy. However, ERA outperforms SSI evidently in terms of computational efficiency (upmost 15 times faster), which is attractive for real-time SHM. Parametric analysis has been also conducted to examine detailed performance of ERA aided by the proposed stabilization-diagram technique. Overall, the aforementioned method can be adopted to achieve a good balance between identification effectiveness and computational efficiency in an automatic working pattern, and has application prospect for real-time SHM of civil structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
家养浩完成签到,获得积分10
刚刚
NexusExplorer应助沉默思山采纳,获得10
刚刚
大模型应助ZJY采纳,获得30
1秒前
Jasper应助summy采纳,获得10
1秒前
小郭关注了科研通微信公众号
1秒前
2秒前
Hello应助费静芙采纳,获得10
2秒前
徐一一发布了新的文献求助150
3秒前
华仔应助草花丝带采纳,获得20
4秒前
小巧书雪发布了新的文献求助10
5秒前
难过宫苴完成签到 ,获得积分10
5秒前
harper发布了新的文献求助50
5秒前
5秒前
6秒前
圆锥香蕉举报dili求助涉嫌违规
6秒前
沉静从露发布了新的文献求助10
8秒前
十三完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
11秒前
慕青应助扭扭车采纳,获得10
11秒前
多多完成签到,获得积分10
12秒前
传奇3应助yizhi猫采纳,获得10
12秒前
kd完成签到,获得积分10
14秒前
诺诺完成签到,获得积分10
14秒前
Ava应助落后悟空采纳,获得10
15秒前
zyzhnu完成签到,获得积分10
15秒前
15秒前
H2CO3完成签到,获得积分10
15秒前
15秒前
李健的小迷弟应助昕昕233采纳,获得10
16秒前
杜客完成签到,获得积分10
17秒前
18发布了新的文献求助10
18秒前
谦让大雁发布了新的文献求助10
18秒前
收拾收拾完成签到,获得积分10
19秒前
19秒前
堀江真夏完成签到 ,获得积分10
19秒前
小体完成签到,获得积分10
20秒前
杨紫宸完成签到,获得积分10
20秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961321
求助须知:如何正确求助?哪些是违规求助? 3507666
关于积分的说明 11137254
捐赠科研通 3240099
什么是DOI,文献DOI怎么找? 1790749
邀请新用户注册赠送积分活动 872460
科研通“疑难数据库(出版商)”最低求助积分说明 803271