Reinforcement Learning Methods for Computation Offloading: A Systematic Review

计算机科学 云计算 计算卸载 边缘计算 强化学习 移动云计算 移动设备 分布式计算 服务器 移动边缘计算 能源消耗 效用计算 边缘设备 人工智能 计算机网络 云安全计算 操作系统 生态学 生物
作者
Zeinab Zabihi,Amir Masoud Eftekhari Moghadam,Mohammad Hossein Rezvani
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:56 (1): 1-41 被引量:11
标识
DOI:10.1145/3603703
摘要

Today, cloud computation offloading may not be an appropriate solution for delay-sensitive applications due to the long distance between end-devices and remote datacenters. In addition, offloading to a remote cloud can consume bandwidth and dramatically increase costs. However, end-devices such as sensors, cameras, and smartphones have limited computing and storage capacity. Processing tasks on such battery-powered and energy-constrained devices becomes even more complex. To address these challenges, a new paradigm called Edge Computing (EC) emerged nearly a decade ago to bring computing resources closer to end-devices. Here, edge servers located between the end-device and the remote cloud perform user tasks. Recently, several new computing paradigms such as Mobile Edge Computing (MEC) and Fog Computing (FC) have emerged to complement Cloud Computing (CC) and EC. Although these paradigms are heterogeneous, they can further reduce energy consumption and task response time, especially for delay-sensitive applications. Computation offloading is a multi-objective, NP-hard optimization problem. A significant part of previous research in this field is devoted to Machine Learning (ML) methods. One of the essential types of ML is Reinforcement Learning (RL), in which an agent learns how to make the best decision using the experiences gained from the environment. This article provides a systematic review of the widely used RL approaches in computation offloading. It covers research in complementary paradigms such as mobile cloud computing, edge computing, fog computing, and the Internet of Things. We explain the reasons for using various RL methods in computation offloading from a technical point of view. This analysis includes both binary offloading and partial offloading techniques. For each method, the essential elements of RL and the characteristics of the environment are discussed regarding the most important criteria. Research challenges and Future trends are also mentioned.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy完成签到,获得积分10
刚刚
舒适仰发布了新的文献求助30
刚刚
刚刚
ding应助德德采纳,获得10
刚刚
1秒前
ywpzdnb发布了新的文献求助10
1秒前
李爱国应助张英俊采纳,获得10
1秒前
所所应助。。采纳,获得10
1秒前
风中听枫发布了新的文献求助10
3秒前
豌豆完成签到,获得积分10
5秒前
yuyu完成签到,获得积分10
6秒前
啦啦啦123完成签到,获得积分10
6秒前
6秒前
一桶雪碧完成签到,获得积分10
8秒前
Eureka.com完成签到,获得积分10
9秒前
充电宝应助落后幼晴采纳,获得10
9秒前
chloe发布了新的文献求助10
9秒前
11秒前
12秒前
斯文败类应助小栩采纳,获得10
12秒前
12秒前
12秒前
。。发布了新的文献求助10
16秒前
无问东西发布了新的文献求助10
16秒前
我是大兴发布了新的文献求助10
17秒前
17秒前
17秒前
打打应助heady采纳,获得10
18秒前
21秒前
聪明帅哥完成签到,获得积分10
22秒前
22秒前
23秒前
23秒前
研友_VZG7GZ应助琉璃采纳,获得10
24秒前
henry先森完成签到,获得积分10
24秒前
欢呼星星发布了新的文献求助10
24秒前
。。完成签到,获得积分10
24秒前
XW发布了新的文献求助10
24秒前
星辰大海应助Garry采纳,获得10
25秒前
小栩完成签到,获得积分10
25秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149204
求助须知:如何正确求助?哪些是违规求助? 2800294
关于积分的说明 7839427
捐赠科研通 2457845
什么是DOI,文献DOI怎么找? 1308138
科研通“疑难数据库(出版商)”最低求助积分说明 628436
版权声明 601706