亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Neural Network Model-Based Reinforcement Learning Control for AUV 3-D Path Following

强化学习 人工神经网络 计算机科学 钢筋 控制(管理) 路径(计算) 人工智能 工程类 计算机网络 结构工程
作者
Dongfang Ma,Xi Chen,Weihao Ma,Huarong Zheng,Fengzhong Qu
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (1): 893-904 被引量:29
标识
DOI:10.1109/tiv.2023.3282681
摘要

Autonomous underwater vehicles (AUVs) have become important tools in the ocean exploration and have drawn considerable attention. Precise control for AUVs is the prerequisite to effectively execute underwater tasks. However, the classical control methods such as model predictive control (MPC) rely heavily on the dynamics model of the controlled system which is difficult to obtain for AUVs. To address this issue, a new reinforcement learning (RL) framework for AUV path-following control is proposed in this article. Specifically, we propose a novel actor-model-critic (AMC) architecture integrating a neural network model with the traditional actor-critic architecture. The neural network model is designed to learn the state transition function to explore the spatio-temporal change patterns of the AUV as well as the surrounding environment. Based on the AMC architecture, a RL-based controller agent named ModelPPO is constructed to control the AUV. With the required sailing speed achieved by a traditional proportional-integral (PI) controller, ModelPPO can control the rudder and elevator fins so that the AUV follows the desired path. Finally, a simulation platform is built to evaluate the performance of the proposed method that is compared with MPC and other RL-based methods. The obtained results demonstrate that the proposed method can achieve better performance than other methods, which demonstrate the great potential of the advanced artificial intelligence methods in solving the traditional motion control problems for intelligent vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
语嘘嘘完成签到,获得积分10
7秒前
laa完成签到,获得积分20
19秒前
laa发布了新的文献求助10
31秒前
Anthonywll完成签到 ,获得积分10
43秒前
Orange应助科研通管家采纳,获得10
44秒前
MchemG应助科研通管家采纳,获得30
44秒前
53秒前
美好灵寒完成签到 ,获得积分10
55秒前
SciGPT应助小东西采纳,获得10
1分钟前
1分钟前
轻松戎发布了新的文献求助10
1分钟前
烟花应助轻松戎采纳,获得10
1分钟前
思源应助DonglinHe采纳,获得10
1分钟前
2分钟前
DonglinHe发布了新的文献求助10
2分钟前
2分钟前
MchemG应助科研通管家采纳,获得30
2分钟前
打打应助Kypsi采纳,获得30
2分钟前
4分钟前
简单思萱发布了新的文献求助10
4分钟前
4分钟前
小蘑菇应助简单思萱采纳,获得10
4分钟前
Dasein完成签到 ,获得积分10
5分钟前
Perry完成签到,获得积分10
5分钟前
王饱饱完成签到 ,获得积分10
5分钟前
7分钟前
7分钟前
Setlla完成签到 ,获得积分10
7分钟前
7分钟前
小东西发布了新的文献求助10
7分钟前
7分钟前
juanwu发布了新的文献求助10
7分钟前
木昆完成签到 ,获得积分10
8分钟前
Yuki完成签到 ,获得积分10
9分钟前
10分钟前
10分钟前
天马发布了新的文献求助10
10分钟前
kuoping完成签到,获得积分0
11分钟前
12分钟前
罗乐天完成签到,获得积分10
12分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346788
求助须知:如何正确求助?哪些是违规求助? 4481194
关于积分的说明 13947357
捐赠科研通 4379190
什么是DOI,文献DOI怎么找? 2406216
邀请新用户注册赠送积分活动 1398779
关于科研通互助平台的介绍 1371693