Neural Network Model-Based Reinforcement Learning Control for AUV 3-D Path Following

强化学习 人工神经网络 计算机科学 钢筋 控制(管理) 路径(计算) 人工智能 工程类 计算机网络 结构工程
作者
Dongfang Ma,Xi Chen,Weihao Ma,Huarong Zheng,Fengzhong Qu
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (1): 893-904 被引量:29
标识
DOI:10.1109/tiv.2023.3282681
摘要

Autonomous underwater vehicles (AUVs) have become important tools in the ocean exploration and have drawn considerable attention. Precise control for AUVs is the prerequisite to effectively execute underwater tasks. However, the classical control methods such as model predictive control (MPC) rely heavily on the dynamics model of the controlled system which is difficult to obtain for AUVs. To address this issue, a new reinforcement learning (RL) framework for AUV path-following control is proposed in this article. Specifically, we propose a novel actor-model-critic (AMC) architecture integrating a neural network model with the traditional actor-critic architecture. The neural network model is designed to learn the state transition function to explore the spatio-temporal change patterns of the AUV as well as the surrounding environment. Based on the AMC architecture, a RL-based controller agent named ModelPPO is constructed to control the AUV. With the required sailing speed achieved by a traditional proportional-integral (PI) controller, ModelPPO can control the rudder and elevator fins so that the AUV follows the desired path. Finally, a simulation platform is built to evaluate the performance of the proposed method that is compared with MPC and other RL-based methods. The obtained results demonstrate that the proposed method can achieve better performance than other methods, which demonstrate the great potential of the advanced artificial intelligence methods in solving the traditional motion control problems for intelligent vehicles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Azyyyy完成签到,获得积分10
刚刚
充电宝应助吃薯条采纳,获得10
刚刚
迅速斑马完成签到,获得积分10
刚刚
尔池完成签到,获得积分10
1秒前
nuonuo发布了新的文献求助10
1秒前
XZB完成签到,获得积分10
1秒前
陈砍砍完成签到 ,获得积分10
2秒前
2秒前
愉快的海发布了新的文献求助10
3秒前
3秒前
万海发布了新的文献求助10
4秒前
周山山完成签到 ,获得积分10
4秒前
ming完成签到 ,获得积分10
5秒前
无花果应助liyukun采纳,获得10
5秒前
5秒前
orixero应助紧张的毛衣采纳,获得10
6秒前
George发布了新的文献求助10
7秒前
CipherSage应助yxdjzwx采纳,获得20
9秒前
小富婆完成签到,获得积分10
9秒前
9秒前
pjson15376449841完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
深情安青应助章半仙采纳,获得10
12秒前
12秒前
doctor小陈发布了新的文献求助10
12秒前
科目三应助高兴的万宝路采纳,获得10
13秒前
乐乐应助顾文采纳,获得10
13秒前
14秒前
15秒前
15秒前
哦豁完成签到 ,获得积分10
15秒前
16秒前
júpiter发布了新的文献求助10
16秒前
louise应助刻苦秋尽采纳,获得10
17秒前
17秒前
hhl完成签到,获得积分10
17秒前
沉静的清涟完成签到,获得积分10
17秒前
zwjhbz完成签到,获得积分10
17秒前
18秒前
科研通AI6应助pjson15376449841采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646335
求助须知:如何正确求助?哪些是违规求助? 4771043
关于积分的说明 15034517
捐赠科研通 4805132
什么是DOI,文献DOI怎么找? 2569436
邀请新用户注册赠送积分活动 1526494
关于科研通互助平台的介绍 1485812