Neural Network Model-Based Reinforcement Learning Control for AUV 3-D Path Following

强化学习 人工神经网络 计算机科学 钢筋 控制(管理) 路径(计算) 人工智能 工程类 计算机网络 结构工程
作者
Dongfang Ma,Xi Chen,Weihao Ma,Huarong Zheng,Fengzhong Qu
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (1): 893-904 被引量:29
标识
DOI:10.1109/tiv.2023.3282681
摘要

Autonomous underwater vehicles (AUVs) have become important tools in the ocean exploration and have drawn considerable attention. Precise control for AUVs is the prerequisite to effectively execute underwater tasks. However, the classical control methods such as model predictive control (MPC) rely heavily on the dynamics model of the controlled system which is difficult to obtain for AUVs. To address this issue, a new reinforcement learning (RL) framework for AUV path-following control is proposed in this article. Specifically, we propose a novel actor-model-critic (AMC) architecture integrating a neural network model with the traditional actor-critic architecture. The neural network model is designed to learn the state transition function to explore the spatio-temporal change patterns of the AUV as well as the surrounding environment. Based on the AMC architecture, a RL-based controller agent named ModelPPO is constructed to control the AUV. With the required sailing speed achieved by a traditional proportional-integral (PI) controller, ModelPPO can control the rudder and elevator fins so that the AUV follows the desired path. Finally, a simulation platform is built to evaluate the performance of the proposed method that is compared with MPC and other RL-based methods. The obtained results demonstrate that the proposed method can achieve better performance than other methods, which demonstrate the great potential of the advanced artificial intelligence methods in solving the traditional motion control problems for intelligent vehicles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助小鱼儿采纳,获得30
1秒前
情怀应助杭世立采纳,获得10
1秒前
田様应助arrow采纳,获得10
1秒前
CDY完成签到,获得积分10
2秒前
su完成签到 ,获得积分10
2秒前
无花果应助文车采纳,获得10
3秒前
清爽的晓啸完成签到,获得积分10
3秒前
mumu发布了新的文献求助10
3秒前
欢呼的保温杯给欢呼的保温杯的求助进行了留言
3秒前
czz发布了新的文献求助10
3秒前
科研通AI6应助yu采纳,获得10
3秒前
三金发布了新的文献求助10
3秒前
zimo完成签到,获得积分10
4秒前
4秒前
4秒前
大模型应助左丘夜玉采纳,获得30
4秒前
安黎完成签到,获得积分10
4秒前
粗犷的凌兰完成签到,获得积分10
5秒前
jl发布了新的文献求助10
5秒前
科研通AI6应助长乐采纳,获得10
5秒前
Kurenai完成签到,获得积分10
5秒前
阿熙娃完成签到,获得积分10
6秒前
归宁完成签到 ,获得积分10
6秒前
6秒前
小林不熬夜完成签到,获得积分10
7秒前
7秒前
galaxy完成签到,获得积分10
7秒前
5AGAME完成签到,获得积分10
7秒前
momi完成签到,获得积分10
7秒前
8秒前
AneyWinter66应助Mr.Ren采纳,获得10
9秒前
9秒前
大菊完成签到,获得积分10
9秒前
9秒前
白干完成签到,获得积分20
10秒前
科研通AI6应助cccchen采纳,获得10
10秒前
转眼间发布了新的文献求助10
10秒前
11秒前
11秒前
半农发布了新的文献求助150
11秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585217
求助须知:如何正确求助?哪些是违规求助? 4669042
关于积分的说明 14774554
捐赠科研通 4617220
什么是DOI,文献DOI怎么找? 2530423
邀请新用户注册赠送积分活动 1499182
关于科研通互助平台的介绍 1467659