清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Neural Network Model-Based Reinforcement Learning Control for AUV 3-D Path Following

强化学习 人工神经网络 计算机科学 钢筋 控制(管理) 路径(计算) 人工智能 工程类 计算机网络 结构工程
作者
Dongfang Ma,Xi Chen,Weihao Ma,Huarong Zheng,Fengzhong Qu
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (1): 893-904 被引量:29
标识
DOI:10.1109/tiv.2023.3282681
摘要

Autonomous underwater vehicles (AUVs) have become important tools in the ocean exploration and have drawn considerable attention. Precise control for AUVs is the prerequisite to effectively execute underwater tasks. However, the classical control methods such as model predictive control (MPC) rely heavily on the dynamics model of the controlled system which is difficult to obtain for AUVs. To address this issue, a new reinforcement learning (RL) framework for AUV path-following control is proposed in this article. Specifically, we propose a novel actor-model-critic (AMC) architecture integrating a neural network model with the traditional actor-critic architecture. The neural network model is designed to learn the state transition function to explore the spatio-temporal change patterns of the AUV as well as the surrounding environment. Based on the AMC architecture, a RL-based controller agent named ModelPPO is constructed to control the AUV. With the required sailing speed achieved by a traditional proportional-integral (PI) controller, ModelPPO can control the rudder and elevator fins so that the AUV follows the desired path. Finally, a simulation platform is built to evaluate the performance of the proposed method that is compared with MPC and other RL-based methods. The obtained results demonstrate that the proposed method can achieve better performance than other methods, which demonstrate the great potential of the advanced artificial intelligence methods in solving the traditional motion control problems for intelligent vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菠萝蜜完成签到 ,获得积分10
4秒前
18秒前
lb001完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
31秒前
32秒前
creep2020完成签到,获得积分10
34秒前
香蕉觅云应助科研通管家采纳,获得10
36秒前
开心每一天完成签到 ,获得积分10
1分钟前
rockyshi完成签到 ,获得积分10
1分钟前
1分钟前
FashionBoy应助舒适以松采纳,获得10
1分钟前
搞怪莫茗发布了新的文献求助10
1分钟前
不再挨训完成签到 ,获得积分10
1分钟前
1分钟前
斯尼奇完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
斯尼奇发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
Yjj发布了新的文献求助10
2分钟前
可夫司机完成签到 ,获得积分10
2分钟前
田田完成签到 ,获得积分10
2分钟前
无花果应助科研通管家采纳,获得10
2分钟前
包容的剑完成签到 ,获得积分10
2分钟前
Liufgui应助乏味采纳,获得30
3分钟前
量子星尘发布了新的文献求助30
3分钟前
wujiwuhui完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
顺利问玉完成签到 ,获得积分10
3分钟前
舒适以松发布了新的文献求助10
3分钟前
4分钟前
饱满的新之完成签到 ,获得积分10
4分钟前
clock完成签到 ,获得积分10
4分钟前
huanghe完成签到,获得积分10
4分钟前
偷得浮生半日闲完成签到,获得积分10
4分钟前
4分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015400
求助须知:如何正确求助?哪些是违规求助? 3555341
关于积分的说明 11317993
捐赠科研通 3288651
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812000