Neural Network Model-Based Reinforcement Learning Control for AUV 3-D Path Following

强化学习 人工神经网络 计算机科学 钢筋 控制(管理) 路径(计算) 人工智能 工程类 计算机网络 结构工程
作者
Dongfang Ma,Xi Chen,Weihao Ma,Huarong Zheng,Fengzhong Qu
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (1): 893-904 被引量:29
标识
DOI:10.1109/tiv.2023.3282681
摘要

Autonomous underwater vehicles (AUVs) have become important tools in the ocean exploration and have drawn considerable attention. Precise control for AUVs is the prerequisite to effectively execute underwater tasks. However, the classical control methods such as model predictive control (MPC) rely heavily on the dynamics model of the controlled system which is difficult to obtain for AUVs. To address this issue, a new reinforcement learning (RL) framework for AUV path-following control is proposed in this article. Specifically, we propose a novel actor-model-critic (AMC) architecture integrating a neural network model with the traditional actor-critic architecture. The neural network model is designed to learn the state transition function to explore the spatio-temporal change patterns of the AUV as well as the surrounding environment. Based on the AMC architecture, a RL-based controller agent named ModelPPO is constructed to control the AUV. With the required sailing speed achieved by a traditional proportional-integral (PI) controller, ModelPPO can control the rudder and elevator fins so that the AUV follows the desired path. Finally, a simulation platform is built to evaluate the performance of the proposed method that is compared with MPC and other RL-based methods. The obtained results demonstrate that the proposed method can achieve better performance than other methods, which demonstrate the great potential of the advanced artificial intelligence methods in solving the traditional motion control problems for intelligent vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大好人顶顶顶顶完成签到,获得积分10
刚刚
qq发布了新的文献求助10
1秒前
科研通AI5应助I北草蜥采纳,获得10
1秒前
ping完成签到,获得积分10
1秒前
1秒前
科研通AI6应助乐观采纳,获得30
1秒前
2秒前
JokerSun完成签到,获得积分10
3秒前
lazy完成签到,获得积分10
3秒前
3秒前
景承完成签到 ,获得积分10
4秒前
dlm12138发布了新的文献求助10
5秒前
zjw完成签到,获得积分10
5秒前
完美世界应助马明芳采纳,获得10
6秒前
azuresky应助heyl采纳,获得30
7秒前
7秒前
香蕉觅云应助斯文明杰采纳,获得10
7秒前
8秒前
Cala洛~完成签到 ,获得积分10
8秒前
萌萌哒瓢酱完成签到,获得积分10
8秒前
Fury完成签到 ,获得积分10
11秒前
xiaoqi完成签到,获得积分10
11秒前
zfamjoy完成签到,获得积分10
11秒前
青阳完成签到,获得积分10
11秒前
liujiayi关注了科研通微信公众号
11秒前
Meyako应助新一袁采纳,获得10
11秒前
樱桃小贩完成签到,获得积分0
12秒前
Zll完成签到,获得积分10
12秒前
乐乐应助热爱科研的小孩采纳,获得10
12秒前
qqqqqqy发布了新的文献求助10
13秒前
芋圆完成签到,获得积分10
13秒前
漂南仰完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
wst1988完成签到,获得积分10
15秒前
忧伤的丹雪关注了科研通微信公众号
15秒前
15秒前
16秒前
huaiqiu关注了科研通微信公众号
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633382
求助须知:如何正确求助?哪些是违规求助? 4029342
关于积分的说明 12467045
捐赠科研通 3715550
什么是DOI,文献DOI怎么找? 2050235
邀请新用户注册赠送积分活动 1081814
科研通“疑难数据库(出版商)”最低求助积分说明 964080