已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Neural Network Model-Based Reinforcement Learning Control for AUV 3-D Path Following

强化学习 人工神经网络 计算机科学 钢筋 控制(管理) 路径(计算) 人工智能 工程类 计算机网络 结构工程
作者
Dongfang Ma,Xi Chen,Weihao Ma,Huarong Zheng,Fengzhong Qu
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (1): 893-904 被引量:29
标识
DOI:10.1109/tiv.2023.3282681
摘要

Autonomous underwater vehicles (AUVs) have become important tools in the ocean exploration and have drawn considerable attention. Precise control for AUVs is the prerequisite to effectively execute underwater tasks. However, the classical control methods such as model predictive control (MPC) rely heavily on the dynamics model of the controlled system which is difficult to obtain for AUVs. To address this issue, a new reinforcement learning (RL) framework for AUV path-following control is proposed in this article. Specifically, we propose a novel actor-model-critic (AMC) architecture integrating a neural network model with the traditional actor-critic architecture. The neural network model is designed to learn the state transition function to explore the spatio-temporal change patterns of the AUV as well as the surrounding environment. Based on the AMC architecture, a RL-based controller agent named ModelPPO is constructed to control the AUV. With the required sailing speed achieved by a traditional proportional-integral (PI) controller, ModelPPO can control the rudder and elevator fins so that the AUV follows the desired path. Finally, a simulation platform is built to evaluate the performance of the proposed method that is compared with MPC and other RL-based methods. The obtained results demonstrate that the proposed method can achieve better performance than other methods, which demonstrate the great potential of the advanced artificial intelligence methods in solving the traditional motion control problems for intelligent vehicles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
婕婕子完成签到,获得积分10
刚刚
zzdd发布了新的文献求助10
刚刚
33完成签到,获得积分10
1秒前
长情青烟完成签到,获得积分10
3秒前
科小白完成签到 ,获得积分0
4秒前
5秒前
美好斓发布了新的文献求助30
5秒前
6秒前
ninini完成签到,获得积分10
6秒前
JaneChen发布了新的文献求助10
9秒前
9秒前
木木发布了新的文献求助10
9秒前
就是你啦发布了新的文献求助10
10秒前
12秒前
12秒前
奥莉奥发布了新的文献求助10
14秒前
机灵采萱完成签到 ,获得积分10
15秒前
明朗发布了新的文献求助10
15秒前
16秒前
Groot完成签到,获得积分10
16秒前
16秒前
科研通AI2S应助siu采纳,获得10
17秒前
丘比特应助范范采纳,获得10
20秒前
21秒前
烟花应助顺利函采纳,获得10
21秒前
liwai完成签到,获得积分20
22秒前
22秒前
幽壑之潜蛟应助徐晨曦采纳,获得10
24秒前
24秒前
小马甲应助明朗采纳,获得10
25秒前
CC完成签到 ,获得积分10
28秒前
wx发布了新的文献求助10
28秒前
独特凝天完成签到 ,获得积分10
28秒前
烟花应助juaner采纳,获得10
28秒前
传奇3应助科研通管家采纳,获得10
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
28秒前
在水一方应助科研通管家采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771671
求助须知:如何正确求助?哪些是违规求助? 5593024
关于积分的说明 15428138
捐赠科研通 4904964
什么是DOI,文献DOI怎么找? 2639092
邀请新用户注册赠送积分活动 1586960
关于科研通互助平台的介绍 1541911