Explaining the description-experience gap in risky decision-making: learning and memory retention during experience as causal mechanisms

认知心理学 心理学 发展心理学
作者
Nathaniel Haines,Peter D. Kvam,Brandon M. Turner
出处
期刊:Cognitive, Affective, & Behavioral Neuroscience [Springer Nature]
卷期号:23 (3): 557-577 被引量:1
标识
DOI:10.3758/s13415-023-01099-z
摘要

When making decisions based on probabilistic outcomes, people guide their behavior using knowledge gathered through both indirect descriptions and direct experience. Paradoxically, how people obtain information significantly impacts apparent preferences. A ubiquitous example is the description-experience gap: individuals seemingly overweight low probability events when probabilities are described yet underweight them when probabilities must be experienced firsthand. A leading explanation for this fundamental gap in decision-making is that probabilities are weighted differently when learned through description relative to experience, yet a formal theoretical account of the mechanism responsible for such weighting differences remains elusive. We demonstrate how various learning and memory retention models incorporating neuroscientifically motivated learning mechanisms can explain why probability weighting and valuation parameters often are found to vary across description and experience. In a simulation study, we show how learning through experience can lead to systematically biased estimates of probability weighting when using a traditional cumulative prospect theory model. We then use hierarchical Bayesian modeling and Bayesian model comparison to show how various learning and memory retention models capture participants' behavior over and above changes in outcome valuation and probability weighting, accounting for description and experience-based decisions in a within-subject experiment. We conclude with a discussion of how substantive models of psychological processes can lead to insights that heuristic statistical models fail to capture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jackmilton完成签到 ,获得积分10
刚刚
AC赵先生发布了新的文献求助10
刚刚
维生素c完成签到 ,获得积分10
1秒前
3秒前
5秒前
5秒前
6秒前
所所应助兜兜采纳,获得10
6秒前
7秒前
小小虾完成签到,获得积分10
7秒前
7秒前
祁威发布了新的文献求助10
8秒前
kate完成签到,获得积分10
9秒前
2233发布了新的文献求助10
10秒前
小小虾发布了新的文献求助10
11秒前
11秒前
11秒前
加载中发布了新的文献求助10
13秒前
李健的小迷弟应助FallWhit3采纳,获得10
14秒前
李爱国应助学习采纳,获得10
15秒前
cqnusq发布了新的文献求助10
15秒前
吴雨完成签到 ,获得积分10
17秒前
沐风发布了新的文献求助10
17秒前
18秒前
18秒前
辉@应助赞zan采纳,获得30
19秒前
nn驳回了汉堡包应助
19秒前
端庄谷南发布了新的文献求助150
20秒前
田様应助辣辣采纳,获得10
21秒前
21秒前
HHYYAA完成签到 ,获得积分20
21秒前
21秒前
qpp完成签到,获得积分10
22秒前
任性迎南完成签到,获得积分10
23秒前
23秒前
Autken完成签到,获得积分20
23秒前
可爱的函函应助小冉采纳,获得10
24秒前
24秒前
HalfGumps发布了新的文献求助10
25秒前
淡抹青春完成签到,获得积分10
25秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158017
求助须知:如何正确求助?哪些是违规求助? 2809393
关于积分的说明 7881798
捐赠科研通 2467878
什么是DOI,文献DOI怎么找? 1313757
科研通“疑难数据库(出版商)”最低求助积分说明 630522
版权声明 601943