控制理论(社会学)
执行机构
跟踪误差
分类
计算机科学
跟踪(教育)
瞬态(计算机编程)
高超音速飞行
高超音速
控制工程
控制(管理)
工程类
人工智能
航空航天工程
心理学
操作系统
情报检索
教育学
作者
Xiangwei Bu,Baoxu Jiang,Yin’an Feng
标识
DOI:10.1016/j.isatra.2022.08.016
摘要
Prescribed performance control (PPC) has been shown to be an effective tool in pursuing prescribed transient and steady-state specifications. Unfortunately, the existing PPC is incapable of handling the peaking of errors caused by actuator saturations, which is due to the short of the ability of readjusting the prescribed performance functions. In this article, we propose a novel PPC scheme, namely the readjusting-performance-function-based approach, for hypersonic flight vehicles subject to actuator saturations. A new sort of performance functions containing readjusting terms are developed to impose prescribed constraints on the velocity tracking error and the altitude tracking error. More specially, the prescribed performance functions can be adaptively readjusted to guarantee that tracking errors are always within them. This eliminates the singular problem that is usually encountered by traditional PPC. To deal with the actuator saturation problem, a novel compensated system (CS) is exploited for the velocity dynamics. Then, the CS is further extended to the altitude subsystem by reforming it as a high-order formulation. Besides the aforementioned baseline controllers, optimal control protocols are also addressed based on adaptive dynamic programming. Finally, comparison simulation results are given to verify the advantages.
科研通智能强力驱动
Strongly Powered by AbleSci AI