清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Application of Deep Learning to Reduce the Rate of Malignancy Among BI-RADS 4A Breast Lesions Based on Ultrasonography

医学 恶性肿瘤 双雷达 乳房成像 放射科 乳腺超声检查 预测值 接收机工作特性 超声波 超声科 深度学习 队列 乳腺癌 人工智能 乳腺摄影术 病理 计算机科学 内科学 癌症
作者
Zhijin Zhao,Size Hou,Shuang Li,Danli Sheng,Qi Liu,Cai Chang,Jiangang Chen,Jiawei Li
出处
期刊:Ultrasound in Medicine and Biology [Elsevier BV]
卷期号:48 (11): 2267-2275 被引量:10
标识
DOI:10.1016/j.ultrasmedbio.2022.06.019
摘要

The aim of the work described here was to develop an ultrasound (US) image-based deep learning model to reduce the rate of malignancy among breast lesions diagnosed as category 4A of the Breast Imaging-Reporting and Data System (BI-RADS) during the pre-operative US examination. A total of 479 breast lesions diagnosed as BI-RADS 4A in pre-operative US examination were enrolled. There were 362 benign lesions and 117 malignant lesions confirmed by postoperative pathology with a malignancy rate of 24.4%. US images were collected from the database server. They were then randomly divided into training and testing cohorts at a ratio of 4:1. To correctly classify malignant and benign tumors diagnosed as BI-RADS 4A in US, four deep learning models, including MobileNet, DenseNet121, Xception and Inception V3, were developed. The performance of deep learning models was compared using the area under the receiver operating characteristic curve (AUROC), accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). Meanwhile, the robustness of the models was evaluated by five-fold cross-validation. Among the four models, the MobileNet model turned to be the optimal model with the best performance in classifying benign and malignant lesions among BI-RADS 4A breast lesions. The AUROC, accuracy, sensitivity, specificity, PPV and NPV of the optimal model in the testing cohort were 0.897, 0.913, 0.926, 0.899, 0.958 and 0.784, respectively. About 14.4% of patients were expected to be upgraded to BI-RADS 4B in US with the assistance of the MobileNet model. The deep learning model MobileNet can help to reduce the rate of malignancy among BI-RADS 4A breast lesions in pre-operative US examinations, which is valuable to clinicians in tailoring treatment for suspicious breast lesions identified on US.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
大宝小臭粑完成签到 ,获得积分10
30秒前
从容向真完成签到,获得积分10
42秒前
Arilus完成签到 ,获得积分10
42秒前
sysi完成签到 ,获得积分10
42秒前
wushuimei完成签到 ,获得积分10
45秒前
54秒前
1分钟前
阳光的凡阳完成签到 ,获得积分10
1分钟前
赵一完成签到 ,获得积分10
1分钟前
wang发布了新的文献求助10
1分钟前
一个小胖子完成签到,获得积分10
1分钟前
even完成签到 ,获得积分10
1分钟前
lynn完成签到 ,获得积分10
1分钟前
披着羊皮的狼完成签到 ,获得积分10
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
点点完成签到 ,获得积分10
1分钟前
夜琉璃完成签到 ,获得积分10
1分钟前
无尘完成签到 ,获得积分0
2分钟前
徐徐完成签到 ,获得积分10
2分钟前
joker完成签到 ,获得积分10
2分钟前
怕孤单的羊完成签到 ,获得积分10
2分钟前
默默完成签到 ,获得积分10
2分钟前
劳伦斯完成签到 ,获得积分10
2分钟前
丝丢皮得完成签到 ,获得积分10
2分钟前
丝丢皮的完成签到 ,获得积分10
2分钟前
boymin2015完成签到 ,获得积分10
2分钟前
舒心的青亦完成签到 ,获得积分10
2分钟前
2分钟前
跳跃的鹏飞完成签到 ,获得积分10
2分钟前
Wenyu完成签到,获得积分10
2分钟前
RLLLLLLL完成签到 ,获得积分10
2分钟前
平常的三问完成签到 ,获得积分10
3分钟前
时老完成签到 ,获得积分10
3分钟前
CR完成签到 ,获得积分10
3分钟前
小山己几完成签到,获得积分10
3分钟前
潇湘完成签到 ,获得积分10
3分钟前
勤恳的惋庭完成签到 ,获得积分10
3分钟前
YifanWang应助科研通管家采纳,获得10
3分钟前
YifanWang应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5293474
求助须知:如何正确求助?哪些是违规求助? 4443563
关于积分的说明 13831373
捐赠科研通 4327360
什么是DOI,文献DOI怎么找? 2375429
邀请新用户注册赠送积分活动 1370718
关于科研通互助平台的介绍 1335584