Application of Deep Learning to Reduce the Rate of Malignancy Among BI-RADS 4A Breast Lesions Based on Ultrasonography

医学 恶性肿瘤 双雷达 乳房成像 放射科 乳腺超声检查 预测值 接收机工作特性 超声波 超声科 深度学习 队列 乳腺癌 人工智能 乳腺摄影术 病理 计算机科学 内科学 癌症
作者
Zhijin Zhao,Size Hou,Shuang Li,Danli Sheng,Qi Liu,Cai Chang,Jiangang Chen,Jiawei Li
出处
期刊:Ultrasound in Medicine and Biology [Elsevier]
卷期号:48 (11): 2267-2275 被引量:10
标识
DOI:10.1016/j.ultrasmedbio.2022.06.019
摘要

The aim of the work described here was to develop an ultrasound (US) image-based deep learning model to reduce the rate of malignancy among breast lesions diagnosed as category 4A of the Breast Imaging-Reporting and Data System (BI-RADS) during the pre-operative US examination. A total of 479 breast lesions diagnosed as BI-RADS 4A in pre-operative US examination were enrolled. There were 362 benign lesions and 117 malignant lesions confirmed by postoperative pathology with a malignancy rate of 24.4%. US images were collected from the database server. They were then randomly divided into training and testing cohorts at a ratio of 4:1. To correctly classify malignant and benign tumors diagnosed as BI-RADS 4A in US, four deep learning models, including MobileNet, DenseNet121, Xception and Inception V3, were developed. The performance of deep learning models was compared using the area under the receiver operating characteristic curve (AUROC), accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). Meanwhile, the robustness of the models was evaluated by five-fold cross-validation. Among the four models, the MobileNet model turned to be the optimal model with the best performance in classifying benign and malignant lesions among BI-RADS 4A breast lesions. The AUROC, accuracy, sensitivity, specificity, PPV and NPV of the optimal model in the testing cohort were 0.897, 0.913, 0.926, 0.899, 0.958 and 0.784, respectively. About 14.4% of patients were expected to be upgraded to BI-RADS 4B in US with the assistance of the MobileNet model. The deep learning model MobileNet can help to reduce the rate of malignancy among BI-RADS 4A breast lesions in pre-operative US examinations, which is valuable to clinicians in tailoring treatment for suspicious breast lesions identified on US.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等待念之完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
5秒前
5秒前
DJ_Tokyo完成签到,获得积分0
9秒前
清华完成签到 ,获得积分10
10秒前
bae完成签到 ,获得积分10
11秒前
菜鸟学习完成签到 ,获得积分10
14秒前
逢场作戱__完成签到 ,获得积分10
14秒前
杨一乐完成签到,获得积分10
21秒前
健壮可冥完成签到 ,获得积分10
22秒前
有魅力的仙人掌完成签到 ,获得积分10
23秒前
玉鱼儿完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
28秒前
姚芭蕉完成签到 ,获得积分0
31秒前
愉快的老三完成签到,获得积分10
31秒前
TUTU完成签到 ,获得积分10
34秒前
左右完成签到 ,获得积分10
35秒前
楚寅完成签到 ,获得积分10
42秒前
奇奇怪怪的大鱼完成签到,获得积分10
43秒前
44秒前
量子星尘发布了新的文献求助10
48秒前
出厂价完成签到,获得积分10
48秒前
呆萌的蚂蚁完成签到 ,获得积分10
48秒前
董耀文完成签到,获得积分10
51秒前
氟锑酸完成签到 ,获得积分10
51秒前
lunhui6453完成签到 ,获得积分10
53秒前
Yi完成签到,获得积分10
54秒前
王继完成签到,获得积分10
54秒前
54秒前
卡片完成签到,获得积分10
56秒前
虚幻念寒完成签到 ,获得积分10
56秒前
胡思乱想完成签到,获得积分10
58秒前
59秒前
hahaha6789y完成签到,获得积分10
59秒前
cl完成签到,获得积分10
1分钟前
sheep完成签到,获得积分10
1分钟前
maybe完成签到,获得积分10
1分钟前
秦含光完成签到,获得积分10
1分钟前
Mo完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418566
求助须知:如何正确求助?哪些是违规求助? 4534257
关于积分的说明 14143326
捐赠科研通 4450472
什么是DOI,文献DOI怎么找? 2441268
邀请新用户注册赠送积分活动 1432974
关于科研通互助平台的介绍 1410417