Application of Deep Learning to Reduce the Rate of Malignancy Among BI-RADS 4A Breast Lesions Based on Ultrasonography

医学 恶性肿瘤 双雷达 乳房成像 放射科 乳腺超声检查 预测值 接收机工作特性 超声波 超声科 深度学习 队列 乳腺癌 人工智能 乳腺摄影术 病理 计算机科学 内科学 癌症
作者
Zhi‐jin Zhao,Size Hou,Shuang Li,Danli Sheng,Qi Liu,Cai Chang,Jiangang Chen,Jiawei Li
出处
期刊:Ultrasound in Medicine and Biology [Elsevier BV]
卷期号:48 (11): 2267-2275 被引量:5
标识
DOI:10.1016/j.ultrasmedbio.2022.06.019
摘要

The aim of the work described here was to develop an ultrasound (US) image-based deep learning model to reduce the rate of malignancy among breast lesions diagnosed as category 4A of the Breast Imaging-Reporting and Data System (BI-RADS) during the pre-operative US examination. A total of 479 breast lesions diagnosed as BI-RADS 4A in pre-operative US examination were enrolled. There were 362 benign lesions and 117 malignant lesions confirmed by postoperative pathology with a malignancy rate of 24.4%. US images were collected from the database server. They were then randomly divided into training and testing cohorts at a ratio of 4:1. To correctly classify malignant and benign tumors diagnosed as BI-RADS 4A in US, four deep learning models, including MobileNet, DenseNet121, Xception and Inception V3, were developed. The performance of deep learning models was compared using the area under the receiver operating characteristic curve (AUROC), accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). Meanwhile, the robustness of the models was evaluated by five-fold cross-validation. Among the four models, the MobileNet model turned to be the optimal model with the best performance in classifying benign and malignant lesions among BI-RADS 4A breast lesions. The AUROC, accuracy, sensitivity, specificity, PPV and NPV of the optimal model in the testing cohort were 0.897, 0.913, 0.926, 0.899, 0.958 and 0.784, respectively. About 14.4% of patients were expected to be upgraded to BI-RADS 4B in US with the assistance of the MobileNet model. The deep learning model MobileNet can help to reduce the rate of malignancy among BI-RADS 4A breast lesions in pre-operative US examinations, which is valuable to clinicians in tailoring treatment for suspicious breast lesions identified on US.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碳水大王完成签到,获得积分10
刚刚
温水完成签到,获得积分10
刚刚
三伏天发布了新的文献求助10
1秒前
Dr Niu应助顺利梦菡采纳,获得10
1秒前
3秒前
尊敬忆秋应助guozizi采纳,获得10
3秒前
4秒前
云魂完成签到,获得积分10
4秒前
马阡榕完成签到 ,获得积分10
4秒前
5秒前
半夜炒茄子完成签到,获得积分10
5秒前
李健应助wqmx2008采纳,获得10
5秒前
思源应助牧万万采纳,获得10
6秒前
6秒前
赘婿应助孤独的钢铁侠采纳,获得10
7秒前
李健的小迷弟应助LDDD采纳,获得10
7秒前
7秒前
科研通AI6应助喜悦的唇彩采纳,获得10
7秒前
8秒前
8秒前
8秒前
旺帮主完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
leezz发布了新的文献求助30
9秒前
15987完成签到,获得积分10
10秒前
10秒前
10秒前
范马勇次郎完成签到,获得积分10
10秒前
如月霖完成签到,获得积分10
11秒前
11秒前
句号完成签到,获得积分10
12秒前
搜集达人应助liu采纳,获得10
12秒前
MG_XSJ完成签到,获得积分10
12秒前
13秒前
Lum发布了新的文献求助10
13秒前
共享精神应助zhangxi采纳,获得10
13秒前
shea发布了新的文献求助10
14秒前
Ade完成签到,获得积分10
14秒前
远_完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4572570
求助须知:如何正确求助?哪些是违规求助? 3993286
关于积分的说明 12361873
捐赠科研通 3666367
什么是DOI,文献DOI怎么找? 2020752
邀请新用户注册赠送积分活动 1054961
科研通“疑难数据库(出版商)”最低求助积分说明 942355