Interpretable classifiers for prediction of disability trajectories using a nationwide longitudinal database

医学 机器学习 人工智能 日常生活活动 随机森林 班级(哲学) 老年学 物理疗法 计算机科学
作者
Yafei Wu,Chaoyi Xiang,Maoni Jia,Ya Fang
出处
期刊:BMC Geriatrics [Springer Nature]
卷期号:22 (1) 被引量:4
标识
DOI:10.1186/s12877-022-03295-x
摘要

To explore the heterogeneous disability trajectories and construct explainable machine learning models for effective prediction of long-term disability trajectories and understanding the mechanisms of predictions among the elderly Chinese at community level.This study retrospectively collected data from the Chinese Longitudinal Healthy Longevity and Happy Family Study between 2002 and 2018. A total of 4149 subjects aged 65 + in 2002 with completed activities of daily living (ADL) information for at least three waves were included. The mixed growth model was used to identify disability trajectories, and five machine learning models were further established to predict disability trajectories using epidemiological variables. An explainable approach was deployed to understand the model's decisions.Three distinct disability trajectories, including normal class (77.3%), progressive class (15.5%), and high-onset class (7.2%), were identified for three-class prediction. The latter two were further merged into abnormal class, accompanied by normal class for two-class prediction. Machine learning, especially random forest and extreme gradient boosting achieved good performance in both two tasks. ADL, age, leisure activity, cognitive function, and blood pressure were key predictors.The findings suggest that machine learning showed good performance and maybe of additional value in analyzing quality indicators in predicting disability trajectories, thereby providing basis to personalize intervention measures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
聪慧一笑完成签到,获得积分10
1秒前
2秒前
2秒前
小绳子儿完成签到,获得积分10
3秒前
清脆愫完成签到 ,获得积分10
3秒前
石沐沐完成签到,获得积分10
4秒前
4秒前
萝卜完成签到,获得积分10
5秒前
Eternity应助高分子bro采纳,获得40
5秒前
5秒前
领导范儿应助起风了采纳,获得10
6秒前
6秒前
xide发布了新的文献求助10
8秒前
vivi完成签到,获得积分10
8秒前
爆米花应助英俊皮卡丘采纳,获得10
10秒前
10秒前
沅沅发布了新的文献求助10
10秒前
12秒前
15秒前
FashionBoy应助大观天下采纳,获得10
15秒前
15秒前
Tantantan完成签到,获得积分10
15秒前
虚幻沛文完成签到,获得积分10
18秒前
1234发布了新的文献求助10
18秒前
姜姜完成签到,获得积分10
19秒前
土行孙发布了新的文献求助10
19秒前
21秒前
完美世界应助纯真曲奇采纳,获得10
21秒前
21秒前
ytjiang发布了新的文献求助10
21秒前
xide完成签到,获得积分20
22秒前
Noldor应助负责的太兰采纳,获得20
22秒前
花花发布了新的文献求助10
23秒前
星辰大海应助科研通管家采纳,获得30
24秒前
24秒前
Icey应助科研通管家采纳,获得10
24秒前
CipherSage应助科研通管家采纳,获得10
24秒前
酷波er应助科研通管家采纳,获得10
24秒前
小马甲应助科研通管家采纳,获得10
24秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
花菁类近红外荧光染料的合成及光学性能研究 500
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161232
求助须知:如何正确求助?哪些是违规求助? 2812684
关于积分的说明 7895969
捐赠科研通 2471492
什么是DOI,文献DOI怎么找? 1316042
科研通“疑难数据库(出版商)”最低求助积分说明 631084
版权声明 602112