Interpretable classifiers for prediction of disability trajectories using a nationwide longitudinal database

医学 机器学习 人工智能 日常生活活动 随机森林 班级(哲学) 老年学 物理疗法 计算机科学
作者
Yafei Wu,Chaoyi Xiang,Maoni Jia,Ya Fang
出处
期刊:BMC Geriatrics [BioMed Central]
卷期号:22 (1) 被引量:4
标识
DOI:10.1186/s12877-022-03295-x
摘要

To explore the heterogeneous disability trajectories and construct explainable machine learning models for effective prediction of long-term disability trajectories and understanding the mechanisms of predictions among the elderly Chinese at community level.This study retrospectively collected data from the Chinese Longitudinal Healthy Longevity and Happy Family Study between 2002 and 2018. A total of 4149 subjects aged 65 + in 2002 with completed activities of daily living (ADL) information for at least three waves were included. The mixed growth model was used to identify disability trajectories, and five machine learning models were further established to predict disability trajectories using epidemiological variables. An explainable approach was deployed to understand the model's decisions.Three distinct disability trajectories, including normal class (77.3%), progressive class (15.5%), and high-onset class (7.2%), were identified for three-class prediction. The latter two were further merged into abnormal class, accompanied by normal class for two-class prediction. Machine learning, especially random forest and extreme gradient boosting achieved good performance in both two tasks. ADL, age, leisure activity, cognitive function, and blood pressure were key predictors.The findings suggest that machine learning showed good performance and maybe of additional value in analyzing quality indicators in predicting disability trajectories, thereby providing basis to personalize intervention measures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助专注的冰巧采纳,获得10
1秒前
1秒前
hanping完成签到,获得积分10
1秒前
小王时完成签到,获得积分10
1秒前
zz完成签到,获得积分10
1秒前
莫非完成签到,获得积分10
1秒前
芝麻发布了新的文献求助10
2秒前
BP完成签到,获得积分10
3秒前
Hannah完成签到,获得积分10
3秒前
ICY完成签到,获得积分10
3秒前
3秒前
4秒前
Ava应助犹豫的觅云采纳,获得10
5秒前
5秒前
5秒前
qwe完成签到,获得积分10
5秒前
乐乐应助张文静采纳,获得10
6秒前
6秒前
听雨潇潇完成签到,获得积分10
6秒前
6秒前
6秒前
lagom完成签到,获得积分10
7秒前
曾经青亦完成签到,获得积分10
7秒前
大反应釜完成签到,获得积分10
8秒前
8秒前
holland完成签到 ,获得积分10
8秒前
夏日天空完成签到,获得积分10
8秒前
qwe关闭了qwe文献求助
9秒前
PJ完成签到,获得积分10
9秒前
10秒前
浔xxx发布了新的文献求助10
10秒前
10秒前
kk发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
诚心的平松完成签到,获得积分10
12秒前
凹凸曼完成签到,获得积分20
12秒前
迟迟完成签到,获得积分10
12秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650