神经毒性
甲酰胺
BETA(编程语言)
噻吩
化学
内科学
药理学
医学
立体化学
毒性
计算机科学
有机化学
程序设计语言
作者
Yusheng Zhao,Praveen P. N. Rao
标识
DOI:10.1021/acschemneuro.3c00576
摘要
This study reports the unusual ability of small molecules N-phenylbenzofuran-2-carboxamide (7a) and N-phenylbenzo[b]thiophene-2-carboxamide (7b) to promote and accelerate Aβ42 aggregation. In the in vitro aggregation kinetic assays, 7a was able to demonstrate rapid increases in Aβ42 fibrillogenesis ranging from 1.5- to 4.7-fold when tested at 1, 5, 10, and 25 μM compared to Aβ42-alone control. Similarly, compound 7b also exhibited 2.9- to 4.3-fold increases in Aβ42 fibrillogenesis at the concentration range tested. Electron microscopy studies at 1, 5, 10, and 25 μM also demonstrate the ability of compounds 7a and 7b to promote and accelerate Aβ42 aggregation with the formation of long, elongated fibril structures. Both 7a and 7b were not toxic to HT22 hippocampal neuronal cells and strikingly were able to prevent Aβ42-induced cytotoxicity in HT22 hippocampal neuronal cells (cell viability ∼74%) compared to the Aβ42-treated group (cell viability ∼20%). Fluorescence imaging studies using BioTracker 490 green, Hoeschst 33342, and the amyloid binding dye ProteoStat further demonstrate the ability of 7a and 7b to promote Aβ42 fibrillogenesis and prevent Aβ42-induced cytotoxicity to HT22 hippocampal neuronal cells. Computational modeling studies suggest that both 7a and 7b can interact with the Aβ42 oligomer and pentamers and have the potential to modulate the self-assembly pathways. The 8-anilino-1-naphthalenesulfonic acid (ANS) dye binding assay also demonstrates the ability of 7a and 7b to expose the hydrophobic surface of Aβ42 to the solvent surface that promotes self-assembly and rapid fibrillogenesis. These studies demonstrate the unique ability of small molecules 7a and 7b to alter the self-assembly and misfolding pathways of Aβ42 by promoting the formation of nontoxic aggregates. These findings have direct implications in the discovery and development of novel small-molecule-based chemical and pharmacological tools to study the Aβ42 aggregation mechanisms, and in the design of novel antiamyloid therapies to treat Alzheimer’s disease.
科研通智能强力驱动
Strongly Powered by AbleSci AI