Design of a Wind Power Forecasting System Based on Deep Learning

风电预测 风力发电 SCADA系统 计算机科学 数值天气预报 实时计算 电力系统 网格 风速 涡轮机 可靠性工程 气象学 模拟 功率(物理) 工程类 电气工程 机械工程 物理 几何学 数学 量子力学
作者
Qitao Sun,Lianda Duan,Hao Liang,Chaofan Zhao,Nana Lu
出处
期刊:Journal of physics [IOP Publishing]
卷期号:2562 (1): 012043-012043 被引量:1
标识
DOI:10.1088/1742-6596/2562/1/012043
摘要

Abstract In recent years, wind energy, as a ubiquitous, easy-to-capture cost-effective clean energy, is accounting for a sharp increase in the installed capacity of China’s new energy grid. However, its stochastic volatility has always brought challenges to the generation scheduling of wind farms. To better optimize the energy management level of wind farms and improve the stability of wind power grid connection, this paper proposes a design of a wind power forecasting system based on deep learning. Our system architecture mainly includes data pre-processing, power prediction, and data application modules. The data pre-processing module will correct the numerical weather forecast (NWP) updated twice daily to get the wind turbine generator (WTG) hub height weather forecast and resample the SCADA data in a 15-minute time resolution. The power prediction module will periodically perform the ultra-short-term and short-term forecasting results and record them in the database. On one hand, the data application module will present the power prediction results and SCADA data to the web page for display. On the other hand, it will provide data to the energy dispatching department for reference. The experiment shows the effect of using a residual channel attention network (RCAN) to correct the NWP and the influence of two different RNN cores, including GRU and LSTM, on the prediction of ultra-short-term wind power results of the DeepAR model. The experimental results show that the proposed RCAN can effectively correct the results of the numerical weather forecast to a single WTG, and the DeepAR model using the GRU core can achieve better performance in the test set than the DeepAR model using the LSTM core. Thus, we choose GRU as the core of the model of our power prediction module.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神勇咖啡豆应助PANDA采纳,获得10
刚刚
mhl11应助斯文明杰采纳,获得10
1秒前
万能图书馆应助善良的苡采纳,获得10
1秒前
归尘应助李小猫采纳,获得10
1秒前
景辣条完成签到,获得积分10
2秒前
ding应助内向代珊采纳,获得10
3秒前
Nik- KC完成签到 ,获得积分10
3秒前
想毕业发布了新的文献求助30
4秒前
4秒前
5秒前
5秒前
仁爱的代容完成签到,获得积分10
6秒前
6秒前
赵某人完成签到,获得积分10
6秒前
lee完成签到,获得积分10
7秒前
8秒前
8秒前
平平会长高完成签到,获得积分10
9秒前
我不爱池鱼应助从容念烟采纳,获得10
9秒前
lee发布了新的文献求助10
9秒前
9秒前
传奇3应助小薇采纳,获得10
10秒前
10秒前
细心雨兰完成签到 ,获得积分10
10秒前
牛阳光完成签到,获得积分20
12秒前
12秒前
欢喜的冬亦完成签到,获得积分20
13秒前
13秒前
Winnie发布了新的文献求助10
13秒前
14秒前
李小猫发布了新的文献求助10
15秒前
16秒前
wanci完成签到,获得积分0
17秒前
沿途南行发布了新的文献求助10
17秒前
空山新雨完成签到,获得积分10
19秒前
19秒前
22秒前
子车茗应助小胖采纳,获得10
22秒前
在水一方应助JimmyFun采纳,获得10
22秒前
书记发布了新的文献求助10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3300378
求助须知:如何正确求助?哪些是违规求助? 2935023
关于积分的说明 8471430
捐赠科研通 2608574
什么是DOI,文献DOI怎么找? 1424325
科研通“疑难数据库(出版商)”最低求助积分说明 661957
邀请新用户注册赠送积分活动 645649