Digital techniques and trends for seed phenotyping using optical sensors

数字化 计算机科学 物候学 适应性 表型 吞吐量 生物 计算机视觉 基因组学 电信 生态学 生物化学 基因组 无线 基因
作者
Fei Liu,Rui Yang,Rongqin Chen,Mahamed Lamine Guindo,Yong He,Jun Zhou,Xiangyu Lǚ,Mengyuan Chen,Yinhui Yang,Wenwen Kong
出处
期刊:Journal of Advanced Research [Elsevier]
被引量:1
标识
DOI:10.1016/j.jare.2023.11.010
摘要

The breeding of high-quality, high-yield, and disease-resistant varieties is closely related to food security. The investigation of breeding results relies on the evaluation of seed phenotype, which is a key step in the process of breeding. In the global digitalization trend, digital technology based on optical sensors can perform the digitization of seed phenotype in a non-contact, high throughput way, thus significantly improving breeding efficiency. This paper provides a comprehensive overview of the principles, characteristics, data processing methods, and bottlenecks associated with three digital technique types based on optical sensors: spectroscopy, digital imaging, and three-dimensional (3D) reconstruction techniques. In addition, the applicability and adaptability of digital techniques based on the optical sensors of maize seed phenotype traits, namely external visible phenotype (EVP) and internal invisible phenotype (IIP), are investigated. Furthermore, trends in future equipment, platform, phenotype data, and processing algorithms are discussed. This review offers conceptual and practical support for seed phenotype digitization based on optical sensors, which will provide reference and guidance for future research. The digital techniques based on optical sensors can perform non-contact and high-throughput seed phenotype evaluation. Due to the distinct characteristics of optical sensors, matching suitable digital techniques according to seed phenotype traits can greatly reduce resource loss, and promote the efficiency of seed evaluation as well as breeding decision-making. Future research in phenotype equipment and platform, phenotype data, and processing algorithms will make digital techniques better meet the demands of seed phenotype evaluation, and promote automatic, integrated, and intelligent evaluation of seed phenotype, further helping to lessen the gap between digital techniques and seed phenotyping.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Liuuhhua完成签到,获得积分10
3秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
4秒前
所所应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
温柔惜筠应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
5秒前
科目三应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得30
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得30
5秒前
罗_应助科研通管家采纳,获得10
5秒前
5秒前
8秒前
8秒前
Leukocyte完成签到 ,获得积分10
8秒前
10秒前
10秒前
10秒前
luoluo完成签到,获得积分10
13秒前
15秒前
Cloud发布了新的文献求助10
16秒前
LC发布了新的文献求助10
16秒前
劣根完成签到,获得积分10
17秒前
虚心的仙人掌完成签到,获得积分10
17秒前
17秒前
wangdana发布了新的文献求助10
19秒前
大力的诗蕾完成签到 ,获得积分10
24秒前
惑感完成签到 ,获得积分10
24秒前
LC完成签到,获得积分10
24秒前
27秒前
l玖应助zy采纳,获得10
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137511
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7786944
捐赠科研通 2444783
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625770
版权声明 601023