Learning A Sparse Transformer Network for Effective Image Deraining

计算机科学 变压器 人工智能 模式识别(心理学) 特征(语言学) 源代码 数据挖掘 机器学习 语言学 量子力学 操作系统 物理 哲学 电压
作者
Xiang Chen,Hao Li,Mingqiang Li,Jinshan Pan
标识
DOI:10.1109/cvpr52729.2023.00571
摘要

Transformers-based methods have achieved significant performance in image deraining as they can model the non-local information which is vital for high-quality image reconstruction. In this paper, we find that most existing Transformers usually use all similarities of the tokens from the query-key pairs for the feature aggregation. However, if the tokens from the query are different from those of the key, the self-attention values estimated from these tokens also involve in feature aggregation, which accordingly interferes with the clear image restoration. To overcome this problem, we propose an effective DeRaining network, Sparse Transformer (DRSformer) that can adaptively keep the most useful self-attention values for feature aggregation so that the aggregated features better facilitate high-quality image reconstruction. Specifically, we develop a learnable top-k selection operator to adaptively retain the most crucial attention scores from the keys for each query for better feature aggregation. Simultaneously, as the naive feed-forward network in Transformers does not model the multi-scale information that is important for latent clear image restoration, we develop an effective mixed-scale feed-forward network to generate better features for image deraining. To learn an enriched set of hybrid features, which combines local context from CNN operators, we equip our model with mixture of experts feature compensator to present a cooperation refinement deraining scheme. Extensive experimental results on the commonly used benchmarks demonstrate that the proposed method achieves favorable performance against state-of-the-art approaches. The source code and trained models are available at https://github.com/cschenxiang/DRSformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助adding采纳,获得10
刚刚
搜集达人应助朱妙彤采纳,获得10
1秒前
1秒前
叶不寿完成签到,获得积分10
1秒前
清欢完成签到,获得积分10
1秒前
2秒前
orangebee完成签到,获得积分10
2秒前
右耳关注了科研通微信公众号
4秒前
搜集达人应助白也采纳,获得10
4秒前
清秀映秋完成签到,获得积分10
4秒前
5秒前
杨zhen完成签到,获得积分10
5秒前
wanci应助shuai采纳,获得10
5秒前
lignin发布了新的文献求助10
5秒前
科研废物发布了新的文献求助10
5秒前
旺帮主发布了新的文献求助10
6秒前
yjzzz完成签到,获得积分10
6秒前
细心小蘑菇完成签到,获得积分20
9秒前
求助人完成签到 ,获得积分10
9秒前
漂亮采波发布了新的文献求助10
10秒前
10秒前
希望天下0贩的0应助roclie采纳,获得10
10秒前
10秒前
深情安青应助粗犷的鸽子采纳,获得10
11秒前
科研废物完成签到,获得积分10
12秒前
晖晖shining发布了新的文献求助10
13秒前
13秒前
Owen应助peng采纳,获得10
14秒前
15秒前
YZ完成签到,获得积分10
15秒前
丽江阿镇完成签到,获得积分10
15秒前
鱼鱼鱼鱼鱼完成签到 ,获得积分10
16秒前
17秒前
连难胜发布了新的文献求助10
17秒前
执着新蕾发布了新的文献求助10
20秒前
七斤文发布了新的文献求助10
20秒前
甜蜜阑悦发布了新的文献求助10
21秒前
22秒前
英姑应助lignin采纳,获得10
22秒前
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954557
求助须知:如何正确求助?哪些是违规求助? 3500718
关于积分的说明 11100747
捐赠科研通 3231204
什么是DOI,文献DOI怎么找? 1786337
邀请新用户注册赠送积分活动 869958
科研通“疑难数据库(出版商)”最低求助积分说明 801737