Learning A Sparse Transformer Network for Effective Image Deraining

计算机科学 变压器 人工智能 模式识别(心理学) 特征(语言学) 源代码 数据挖掘 机器学习 语言学 量子力学 操作系统 物理 哲学 电压
作者
Xiang Chen,Hao Li,Mingqiang Li,Jinshan Pan
标识
DOI:10.1109/cvpr52729.2023.00571
摘要

Transformers-based methods have achieved significant performance in image deraining as they can model the non-local information which is vital for high-quality image reconstruction. In this paper, we find that most existing Transformers usually use all similarities of the tokens from the query-key pairs for the feature aggregation. However, if the tokens from the query are different from those of the key, the self-attention values estimated from these tokens also involve in feature aggregation, which accordingly interferes with the clear image restoration. To overcome this problem, we propose an effective DeRaining network, Sparse Transformer (DRSformer) that can adaptively keep the most useful self-attention values for feature aggregation so that the aggregated features better facilitate high-quality image reconstruction. Specifically, we develop a learnable top-k selection operator to adaptively retain the most crucial attention scores from the keys for each query for better feature aggregation. Simultaneously, as the naive feed-forward network in Transformers does not model the multi-scale information that is important for latent clear image restoration, we develop an effective mixed-scale feed-forward network to generate better features for image deraining. To learn an enriched set of hybrid features, which combines local context from CNN operators, we equip our model with mixture of experts feature compensator to present a cooperation refinement deraining scheme. Extensive experimental results on the commonly used benchmarks demonstrate that the proposed method achieves favorable performance against state-of-the-art approaches. The source code and trained models are available at https://github.com/cschenxiang/DRSformer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助南山鹤采纳,获得10
刚刚
Akim应助Mia采纳,获得30
刚刚
刚刚
1秒前
1秒前
彭于晏应助123采纳,获得10
1秒前
1秒前
我来试试水完成签到 ,获得积分10
1秒前
Orange应助fcycukvujblk采纳,获得10
1秒前
2秒前
一念发布了新的文献求助10
2秒前
2秒前
ruochenzu发布了新的文献求助10
3秒前
糖糖完成签到 ,获得积分10
3秒前
3秒前
李盛男发布了新的文献求助10
3秒前
核桃发布了新的文献求助30
3秒前
3秒前
科研通AI6应助IMAGINEERING采纳,获得10
3秒前
Stella应助feige采纳,获得10
4秒前
伊影完成签到,获得积分20
4秒前
zik应助淡淡翠曼采纳,获得10
4秒前
清爽老九发布了新的文献求助30
4秒前
小刘同学完成签到 ,获得积分10
5秒前
平淡的紫菜完成签到,获得积分10
5秒前
Ava应助songf11采纳,获得10
5秒前
5秒前
5秒前
5秒前
含蓄的天问完成签到 ,获得积分10
5秒前
5秒前
Jane发布了新的文献求助10
6秒前
6秒前
lizhongguo发布了新的文献求助10
6秒前
56789完成签到,获得积分10
6秒前
科研通AI6应助weeklywh采纳,获得10
7秒前
Oui完成签到 ,获得积分10
7秒前
7秒前
研友_8WOWr8发布了新的文献求助10
8秒前
8秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587292
求助须知:如何正确求助?哪些是违规求助? 4670431
关于积分的说明 14782816
捐赠科研通 4622441
什么是DOI,文献DOI怎么找? 2531237
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066