Learning A Sparse Transformer Network for Effective Image Deraining

计算机科学 变压器 人工智能 模式识别(心理学) 特征(语言学) 源代码 数据挖掘 机器学习 语言学 哲学 物理 量子力学 电压 操作系统
作者
Xiang Chen,Hao Li,Mingqiang Li,Jinshan Pan
标识
DOI:10.1109/cvpr52729.2023.00571
摘要

Transformers-based methods have achieved significant performance in image deraining as they can model the non-local information which is vital for high-quality image reconstruction. In this paper, we find that most existing Transformers usually use all similarities of the tokens from the query-key pairs for the feature aggregation. However, if the tokens from the query are different from those of the key, the self-attention values estimated from these tokens also involve in feature aggregation, which accordingly interferes with the clear image restoration. To overcome this problem, we propose an effective DeRaining network, Sparse Transformer (DRSformer) that can adaptively keep the most useful self-attention values for feature aggregation so that the aggregated features better facilitate high-quality image reconstruction. Specifically, we develop a learnable top-k selection operator to adaptively retain the most crucial attention scores from the keys for each query for better feature aggregation. Simultaneously, as the naive feed-forward network in Transformers does not model the multi-scale information that is important for latent clear image restoration, we develop an effective mixed-scale feed-forward network to generate better features for image deraining. To learn an enriched set of hybrid features, which combines local context from CNN operators, we equip our model with mixture of experts feature compensator to present a cooperation refinement deraining scheme. Extensive experimental results on the commonly used benchmarks demonstrate that the proposed method achieves favorable performance against state-of-the-art approaches. The source code and trained models are available at https://github.com/cschenxiang/DRSformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
假精灵儿发布了新的文献求助10
1秒前
李健应助心安采纳,获得30
2秒前
小蘑菇应助axin采纳,获得10
2秒前
汉堡包应助maliang666采纳,获得10
3秒前
feifan123完成签到 ,获得积分10
4秒前
WW发布了新的文献求助10
4秒前
瑜兮发布了新的文献求助10
6秒前
evefei完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
9秒前
10秒前
开朗万天完成签到,获得积分10
10秒前
阿哈发布了新的文献求助10
11秒前
西海小甜豆完成签到,获得积分20
11秒前
赵teng发布了新的文献求助10
11秒前
吹气球的金毛完成签到,获得积分10
11秒前
12秒前
梦茵发布了新的文献求助10
12秒前
13秒前
ZUOWEI完成签到,获得积分10
13秒前
科研通AI2S应助开朗万天采纳,获得10
14秒前
充电宝应助luckype采纳,获得10
14秒前
15秒前
ZUOWEI发布了新的文献求助10
15秒前
maliang666发布了新的文献求助10
16秒前
lili发布了新的文献求助10
17秒前
deswin发布了新的文献求助10
18秒前
科研小白发布了新的文献求助10
18秒前
赵teng完成签到,获得积分20
18秒前
19秒前
爱因斯坦那个和我一样的科学家完成签到,获得积分10
19秒前
21秒前
温柔野心家完成签到 ,获得积分10
22秒前
22秒前
Jasper应助淡淡菠萝采纳,获得10
22秒前
小滕发布了新的文献求助10
23秒前
24秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140718
求助须知:如何正确求助?哪些是违规求助? 2791628
关于积分的说明 7799729
捐赠科研通 2447921
什么是DOI,文献DOI怎么找? 1302210
科研通“疑难数据库(出版商)”最低求助积分说明 626473
版权声明 601194