Learning A Sparse Transformer Network for Effective Image Deraining

计算机科学 变压器 人工智能 模式识别(心理学) 特征(语言学) 源代码 数据挖掘 机器学习 语言学 量子力学 操作系统 物理 哲学 电压
作者
Xiang Chen,Hao Li,Mingqiang Li,Jinshan Pan
标识
DOI:10.1109/cvpr52729.2023.00571
摘要

Transformers-based methods have achieved significant performance in image deraining as they can model the non-local information which is vital for high-quality image reconstruction. In this paper, we find that most existing Transformers usually use all similarities of the tokens from the query-key pairs for the feature aggregation. However, if the tokens from the query are different from those of the key, the self-attention values estimated from these tokens also involve in feature aggregation, which accordingly interferes with the clear image restoration. To overcome this problem, we propose an effective DeRaining network, Sparse Transformer (DRSformer) that can adaptively keep the most useful self-attention values for feature aggregation so that the aggregated features better facilitate high-quality image reconstruction. Specifically, we develop a learnable top-k selection operator to adaptively retain the most crucial attention scores from the keys for each query for better feature aggregation. Simultaneously, as the naive feed-forward network in Transformers does not model the multi-scale information that is important for latent clear image restoration, we develop an effective mixed-scale feed-forward network to generate better features for image deraining. To learn an enriched set of hybrid features, which combines local context from CNN operators, we equip our model with mixture of experts feature compensator to present a cooperation refinement deraining scheme. Extensive experimental results on the commonly used benchmarks demonstrate that the proposed method achieves favorable performance against state-of-the-art approaches. The source code and trained models are available at https://github.com/cschenxiang/DRSformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
诗图完成签到,获得积分10
刚刚
STAR应助淘宝叮咚采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
阿怪发布了新的文献求助10
1秒前
Linden_bd完成签到 ,获得积分10
1秒前
十八完成签到 ,获得积分10
2秒前
2秒前
一定长完成签到 ,获得积分10
2秒前
野原小龙虾完成签到,获得积分10
2秒前
3秒前
njhuxs完成签到,获得积分10
3秒前
orixero应助zzz采纳,获得10
3秒前
3秒前
123完成签到 ,获得积分10
4秒前
onedollar发布了新的文献求助10
4秒前
脑洞疼应助个性的依风采纳,获得10
4秒前
实验好难应助xin_you采纳,获得10
5秒前
5秒前
晚意完成签到,获得积分10
5秒前
任晴完成签到,获得积分10
6秒前
orixero应助ZMH采纳,获得30
6秒前
纪元龙完成签到,获得积分10
6秒前
初空月儿完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
wzy完成签到,获得积分10
8秒前
aaronpancn完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
小马完成签到,获得积分10
8秒前
高凯璇完成签到,获得积分10
9秒前
动漫大师发布了新的文献求助10
9秒前
9秒前
9秒前
Liujiawen0008发布了新的文献求助10
10秒前
sciexplorer发布了新的文献求助10
10秒前
10秒前
zwbzwb12341234完成签到,获得积分10
10秒前
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666902
求助须知:如何正确求助?哪些是违规求助? 3225730
关于积分的说明 9765171
捐赠科研通 2935586
什么是DOI,文献DOI怎么找? 1607790
邀请新用户注册赠送积分活动 759374
科研通“疑难数据库(出版商)”最低求助积分说明 735302