Notch信号通路
细胞生物学
细胞内
跨膜蛋白
Notch蛋白质类
核心
化学
跨膜结构域
生物
信号转导
受体
生物化学
作者
Alexandre Pj Martin,Gary A. Bradshaw,Robyn J. Eisert,Emily D. Egan,Lena Tveriakhina,Julia M. Rogers,Andrew N. Dates,Gustavo Scanavachi,Jon C. Aster,Tomas Kirchhausen,Marian Kalocsay,Stephen C. Blacklow
出处
期刊:Science Signaling
[American Association for the Advancement of Science (AAAS)]
日期:2023-08-01
卷期号:16 (796)
被引量:1
标识
DOI:10.1126/scisignal.adg6474
摘要
Notch signaling relies on ligand-induced proteolysis of the transmembrane receptor Notch to liberate a nuclear effector that drives cell fate decisions. Upon ligand binding, sequential cleavage of Notch by the transmembrane protease ADAM10 and the intracellular protease γ-secretase releases the Notch intracellular domain (NICD), which translocates to the nucleus and forms a complex that induces target gene transcription. To map the location and timing of the individual steps required for the proteolysis and movement of Notch from the plasma membrane to the nucleus, we used proximity labeling with quantitative, multiplexed mass spectrometry to monitor the interaction partners of endogenous NOTCH2 after ligand stimulation in the presence of a γ-secretase inhibitor and as a function of time after inhibitor removal. Our studies showed that γ-secretase-mediated cleavage of NOTCH2 occurred in an intracellular compartment and that formation of nuclear complexes and recruitment of chromatin-modifying enzymes occurred within 45 min of inhibitor washout. These findings provide a detailed spatiotemporal map tracking the path of Notch from the plasma membrane to the nucleus and identify signaling events that are potential targets for modulating Notch activity.
科研通智能强力驱动
Strongly Powered by AbleSci AI