Wavelet transform and edge loss-based three-stage segmentation model for retinal vessel

分割 计算机科学 人工智能 计算机视觉 小波 眼底(子宫) 噪音(视频) 模式识别(心理学) 编码器 转化(遗传学) 图像(数学) 基因 操作系统 眼科 医学 化学 生物化学
作者
Xuecheng Li,Yuanjie Zheng,Mingde Zang,Wanzhen Jiao
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:86: 105355-105355 被引量:1
标识
DOI:10.1016/j.bspc.2023.105355
摘要

Retinal vessel segmentation is a rapid method for the diagnosis of ocular diseases. By applying deep learning-based techniques to retinal images, more structural information about retinal vessels can be extracted to accurately assess the extent and classification of ocular diseases. However, current segmentation networks typically consist of a single network, making them vulnerable to noise, decreased image quality, and other interfering factors, resulting in erroneous segmentation outcomes. Additionally, the traditional skip connection mechanism introduces noise from the encoder features into the decoder, which reduces the refinement of the final segmentation result. A three-stage fundus vessel segmentation model called EWSNet is proposed to address these issues. The EWSNet utilizes two different models to extract and reconstruct coarse and fine blood vessels, respectively. The reconstructed results are fed into the refinement network to rebuild the edge portion of the retinal vessels, achieving higher segmentation performance. Within the framework of EWSNet, a wavelet-transformation-based sampling module is used to effectively suppress high-frequency noise in the features while using low-frequency features to reconstruct vascular information. Besides, a new edge loss function (E-BCE Loss) is designed to encourage more precise predictions at the segmentation edges. Experimental results on CHASE_DB1, HRF, STARE, and a newly collected ultra-wide-angle fundus dataset (UWF) demonstrate that EWSNet has more robust segmentation performance in the microvascular region compared to the current mainstream models. The code is available at: https://github.com/xuecheng990531/EWSNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科目三应助美好冰蓝采纳,获得10
1秒前
1秒前
司空豁完成签到,获得积分10
1秒前
小团团发布了新的文献求助50
2秒前
李昆朋完成签到,获得积分10
2秒前
呆萌幼晴完成签到,获得积分10
3秒前
平凡完成签到,获得积分10
4秒前
Hunter完成签到,获得积分10
4秒前
seven完成签到,获得积分10
4秒前
lhl完成签到,获得积分10
4秒前
iNk应助马某采纳,获得10
5秒前
小俞发布了新的文献求助10
6秒前
情怀应助Gtpangda采纳,获得10
6秒前
ziwei完成签到,获得积分10
6秒前
裴仰纳完成签到 ,获得积分10
7秒前
BBA完成签到 ,获得积分10
11秒前
SYLH应助禁止通行采纳,获得10
13秒前
回眸完成签到 ,获得积分10
14秒前
雨香完成签到,获得积分10
14秒前
可爱的函函应助ybwei2008_163采纳,获得10
14秒前
Chen发布了新的文献求助20
14秒前
LELE发布了新的文献求助20
19秒前
帅气男孩完成签到,获得积分10
20秒前
huangzq1681完成签到,获得积分10
21秒前
x971017完成签到,获得积分10
21秒前
mmmmmMM完成签到,获得积分10
21秒前
美好冰蓝完成签到 ,获得积分10
23秒前
丘比特应助嘿咻丶嘿哈采纳,获得10
23秒前
三脸茫然完成签到 ,获得积分10
23秒前
李健应助大大怪采纳,获得10
25秒前
美好冰蓝关注了科研通微信公众号
27秒前
28秒前
wmm完成签到,获得积分10
28秒前
Chen发布了新的文献求助10
28秒前
Yiyyan完成签到,获得积分10
28秒前
29秒前
兔兔完成签到,获得积分10
30秒前
30秒前
有夜空的地方必然有星河完成签到 ,获得积分10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965864
求助须知:如何正确求助?哪些是违规求助? 3511176
关于积分的说明 11156785
捐赠科研通 3245809
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804278