Wavelet transform and edge loss-based three-stage segmentation model for retinal vessel

分割 计算机科学 人工智能 计算机视觉 小波 眼底(子宫) 噪音(视频) 模式识别(心理学) 编码器 转化(遗传学) 图像(数学) 基因 操作系统 眼科 医学 化学 生物化学
作者
Xuecheng Li,Yuanjie Zheng,Mingde Zang,Wanzhen Jiao
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:86: 105355-105355 被引量:1
标识
DOI:10.1016/j.bspc.2023.105355
摘要

Retinal vessel segmentation is a rapid method for the diagnosis of ocular diseases. By applying deep learning-based techniques to retinal images, more structural information about retinal vessels can be extracted to accurately assess the extent and classification of ocular diseases. However, current segmentation networks typically consist of a single network, making them vulnerable to noise, decreased image quality, and other interfering factors, resulting in erroneous segmentation outcomes. Additionally, the traditional skip connection mechanism introduces noise from the encoder features into the decoder, which reduces the refinement of the final segmentation result. A three-stage fundus vessel segmentation model called EWSNet is proposed to address these issues. The EWSNet utilizes two different models to extract and reconstruct coarse and fine blood vessels, respectively. The reconstructed results are fed into the refinement network to rebuild the edge portion of the retinal vessels, achieving higher segmentation performance. Within the framework of EWSNet, a wavelet-transformation-based sampling module is used to effectively suppress high-frequency noise in the features while using low-frequency features to reconstruct vascular information. Besides, a new edge loss function (E-BCE Loss) is designed to encourage more precise predictions at the segmentation edges. Experimental results on CHASE_DB1, HRF, STARE, and a newly collected ultra-wide-angle fundus dataset (UWF) demonstrate that EWSNet has more robust segmentation performance in the microvascular region compared to the current mainstream models. The code is available at: https://github.com/xuecheng990531/EWSNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
锤子废柴发布了新的文献求助10
刚刚
脑洞疼应助研友_V8Qmr8采纳,获得10
2秒前
4秒前
A宇完成签到,获得积分10
5秒前
6秒前
mengloo发布了新的文献求助10
8秒前
深情安青应助周凡淇采纳,获得10
9秒前
熊熊面包应助周凡淇采纳,获得10
9秒前
科目三应助周凡淇采纳,获得10
9秒前
大个应助周凡淇采纳,获得10
9秒前
英姑应助周凡淇采纳,获得10
9秒前
NexusExplorer应助周凡淇采纳,获得30
9秒前
星辰大海应助周凡淇采纳,获得10
9秒前
houchengru应助周凡淇采纳,获得10
9秒前
甜甜玫瑰应助周凡淇采纳,获得10
9秒前
香蕉觅云应助锤子废柴采纳,获得10
10秒前
阿童木完成签到,获得积分10
12秒前
12秒前
nengzou完成签到 ,获得积分10
12秒前
元世立发布了新的文献求助10
12秒前
txxxx完成签到,获得积分10
13秒前
13秒前
13秒前
彩色语儿完成签到,获得积分10
13秒前
15秒前
16秒前
16秒前
不吃香菜完成签到 ,获得积分10
16秒前
熹微发布了新的文献求助10
17秒前
Singularity发布了新的文献求助10
17秒前
17秒前
18秒前
完美世界应助跟我回江南采纳,获得10
18秒前
css发布了新的文献求助10
19秒前
sush1hang发布了新的文献求助10
21秒前
astalavista发布了新的文献求助10
21秒前
研友_V8Qmr8发布了新的文献求助10
21秒前
甜的瓜发布了新的文献求助10
21秒前
23秒前
24秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125633
求助须知:如何正确求助?哪些是违规求助? 2775924
关于积分的说明 7728426
捐赠科研通 2431401
什么是DOI,文献DOI怎么找? 1291999
科研通“疑难数据库(出版商)”最低求助积分说明 622301
版权声明 600376