Wavelet transform and edge loss-based three-stage segmentation model for retinal vessel

分割 计算机科学 人工智能 计算机视觉 小波 眼底(子宫) 噪音(视频) 模式识别(心理学) 编码器 转化(遗传学) 图像(数学) 医学 生物化学 化学 基因 眼科 操作系统
作者
Xuecheng Li,Yuanjie Zheng,Mingde Zang,Wanzhen Jiao
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:86: 105355-105355 被引量:1
标识
DOI:10.1016/j.bspc.2023.105355
摘要

Retinal vessel segmentation is a rapid method for the diagnosis of ocular diseases. By applying deep learning-based techniques to retinal images, more structural information about retinal vessels can be extracted to accurately assess the extent and classification of ocular diseases. However, current segmentation networks typically consist of a single network, making them vulnerable to noise, decreased image quality, and other interfering factors, resulting in erroneous segmentation outcomes. Additionally, the traditional skip connection mechanism introduces noise from the encoder features into the decoder, which reduces the refinement of the final segmentation result. A three-stage fundus vessel segmentation model called EWSNet is proposed to address these issues. The EWSNet utilizes two different models to extract and reconstruct coarse and fine blood vessels, respectively. The reconstructed results are fed into the refinement network to rebuild the edge portion of the retinal vessels, achieving higher segmentation performance. Within the framework of EWSNet, a wavelet-transformation-based sampling module is used to effectively suppress high-frequency noise in the features while using low-frequency features to reconstruct vascular information. Besides, a new edge loss function (E-BCE Loss) is designed to encourage more precise predictions at the segmentation edges. Experimental results on CHASE_DB1, HRF, STARE, and a newly collected ultra-wide-angle fundus dataset (UWF) demonstrate that EWSNet has more robust segmentation performance in the microvascular region compared to the current mainstream models. The code is available at: https://github.com/xuecheng990531/EWSNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zisui完成签到,获得积分10
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
过冬完成签到,获得积分10
7秒前
8秒前
8秒前
愉快半烟发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
11秒前
13秒前
fb12000发布了新的文献求助10
13秒前
王鹤霏完成签到,获得积分10
13秒前
xzj发布了新的文献求助10
13秒前
fb12000发布了新的文献求助10
13秒前
吐金纳发布了新的文献求助20
14秒前
Noah完成签到 ,获得积分0
14秒前
15秒前
15秒前
木偶人完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
fb12000发布了新的文献求助10
16秒前
fb12000发布了新的文献求助10
17秒前
ding应助小徐徐爱学习采纳,获得10
17秒前
18秒前
英俊水池发布了新的文献求助10
19秒前
充电宝应助HU采纳,获得10
19秒前
可爱的函函应助musejie采纳,获得10
20秒前
20秒前
GlockieZhao完成签到,获得积分10
21秒前
23秒前
Yvonne发布了新的文献求助10
23秒前
无极微光应助ChenYX采纳,获得20
25秒前
kokp发布了新的文献求助10
25秒前
25秒前
momo完成签到,获得积分10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679544
求助须知:如何正确求助?哪些是违规求助? 4991293
关于积分的说明 15169832
捐赠科研通 4839336
什么是DOI,文献DOI怎么找? 2593253
邀请新用户注册赠送积分活动 1546377
关于科研通互助平台的介绍 1504488