Wavelet transform and edge loss-based three-stage segmentation model for retinal vessel

分割 计算机科学 人工智能 计算机视觉 小波 眼底(子宫) 噪音(视频) 模式识别(心理学) 编码器 转化(遗传学) 图像(数学) 医学 生物化学 化学 基因 眼科 操作系统
作者
Xuecheng Li,Yuanjie Zheng,Mingde Zang,Wanzhen Jiao
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:86: 105355-105355 被引量:1
标识
DOI:10.1016/j.bspc.2023.105355
摘要

Retinal vessel segmentation is a rapid method for the diagnosis of ocular diseases. By applying deep learning-based techniques to retinal images, more structural information about retinal vessels can be extracted to accurately assess the extent and classification of ocular diseases. However, current segmentation networks typically consist of a single network, making them vulnerable to noise, decreased image quality, and other interfering factors, resulting in erroneous segmentation outcomes. Additionally, the traditional skip connection mechanism introduces noise from the encoder features into the decoder, which reduces the refinement of the final segmentation result. A three-stage fundus vessel segmentation model called EWSNet is proposed to address these issues. The EWSNet utilizes two different models to extract and reconstruct coarse and fine blood vessels, respectively. The reconstructed results are fed into the refinement network to rebuild the edge portion of the retinal vessels, achieving higher segmentation performance. Within the framework of EWSNet, a wavelet-transformation-based sampling module is used to effectively suppress high-frequency noise in the features while using low-frequency features to reconstruct vascular information. Besides, a new edge loss function (E-BCE Loss) is designed to encourage more precise predictions at the segmentation edges. Experimental results on CHASE_DB1, HRF, STARE, and a newly collected ultra-wide-angle fundus dataset (UWF) demonstrate that EWSNet has more robust segmentation performance in the microvascular region compared to the current mainstream models. The code is available at: https://github.com/xuecheng990531/EWSNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Bigfish完成签到,获得积分10
1秒前
excalibur发布了新的文献求助10
2秒前
cyn0762完成签到,获得积分10
2秒前
共享精神应助malenia采纳,获得10
2秒前
3秒前
隐形曼青应助wzc采纳,获得10
3秒前
华仔应助愤怒的寻梅采纳,获得10
3秒前
勤恳的听兰完成签到,获得积分10
3秒前
韧战发布了新的文献求助10
4秒前
淡然亦云发布了新的文献求助10
6秒前
linnya发布了新的文献求助10
7秒前
Yuantian发布了新的文献求助20
8秒前
9秒前
10秒前
shijiamian完成签到,获得积分10
10秒前
10秒前
11秒前
limz完成签到,获得积分10
11秒前
蒸蒸日上完成签到 ,获得积分10
11秒前
JamesPei应助sanL采纳,获得10
14秒前
14秒前
zzww发布了新的文献求助10
14秒前
阳光的霸发布了新的文献求助10
14秒前
wzc发布了新的文献求助10
15秒前
15秒前
King完成签到 ,获得积分10
15秒前
16秒前
瘦瘦凌晴发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
科研通AI5应助Bown采纳,获得10
17秒前
17秒前
18秒前
情怀应助將雨采纳,获得10
19秒前
19秒前
欣喜从波发布了新的文献求助10
21秒前
ychen发布了新的文献求助10
21秒前
21秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5088822
求助须知:如何正确求助?哪些是违规求助? 4303677
关于积分的说明 13412175
捐赠科研通 4129366
什么是DOI,文献DOI怎么找? 2261427
邀请新用户注册赠送积分活动 1265480
关于科研通互助平台的介绍 1200010