亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial intelligence evaluation of coronary computed tomography angiography for coronary stenosis classification and diagnosis

医学 狭窄 冠状动脉疾病 计算机辅助设计 放射科 冠状动脉造影 部分流量储备 计算机断层血管造影 科恩卡帕 心脏病学 人工智能 血管造影 内科学 机器学习 计算机科学 心肌梗塞 工程类 工程制图
作者
Dan‐Ying Lee,Chun‐Chin Chang,Chieh‐Fu Ko,Yin‐Hao Lee,Yi‐Lin Tsai,Ruey‐Hsing Chou,Ting‐Yung Chang,Shu‐Mei Guo,Po‐Hsun Huang
出处
期刊:European Journal of Clinical Investigation [Wiley]
卷期号:54 (1) 被引量:5
标识
DOI:10.1111/eci.14089
摘要

Abstract Background Ruling out obstructive coronary artery disease (CAD) using coronary computed tomography angiography (CCTA) is time‐consuming and challenging. This study developed a deep learning (DL) model to assist in detecting obstructive CAD on CCTA to streamline workflows. Methods In total, 2929 DICOM files and 7945 labels were extracted from curved planar reformatted CCTA images. A modified Inception V3 model was adopted. To validate the artificial intelligence (AI) model, two cardiologists labelled and adjudicated the classification of coronary stenosis on CCTA. The model was trained to differentiate the coronary artery into binary stenosis classifications <50% and ≥50% stenosis. Using the quantitative coronary angiography (QCA) consensus results as a reference standard, the performance of the AI model and CCTA radiology readers was compared by calculating Cohen's kappa coefficients at patient and vessel levels. The net reclassification index was used to evaluate the net benefit of the DL model. Results The diagnostic accuracy of the AI model was 92.3% and 88.4% at the patient and vessel levels, respectively. Compared with CCTA radiology readers, the AI model had a better agreement for binary stenosis classification at both patient and vessel levels (Cohen kappa coefficient: .79 vs. .39 and .77 vs. .40, p < .0001). The AI model also exhibited significantly improved model discrimination and reclassification (Net reclassification index = .350; Z = 4.194; p < .001). Conclusions The developed AI model identified obstructive CAD, and the model results correlated well with QCA results. Incorporating the model into the reporting system of CCTA may improve workflows.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
完美世界应助七濑采纳,获得10
1秒前
Nomb1发布了新的文献求助10
2秒前
我是老大应助Nomb1采纳,获得10
7秒前
水牛完成签到,获得积分10
10秒前
14秒前
文艺水风完成签到 ,获得积分10
14秒前
七濑发布了新的文献求助10
19秒前
ding应助西安浴日光能赵炜采纳,获得10
26秒前
一一一多完成签到 ,获得积分10
31秒前
34秒前
wanci应助清一采纳,获得10
36秒前
xiaohardy完成签到,获得积分10
37秒前
一号小玩家完成签到,获得积分10
37秒前
浮游应助科研通管家采纳,获得10
38秒前
深情安青应助科研通管家采纳,获得10
38秒前
ceeray23应助科研通管家采纳,获得10
38秒前
浮游应助科研通管家采纳,获得10
38秒前
七濑完成签到,获得积分10
38秒前
Yyyyyyyyy发布了新的文献求助10
38秒前
42秒前
43秒前
44秒前
皮皮完成签到 ,获得积分10
47秒前
丘比特应助zzazz采纳,获得10
48秒前
清一发布了新的文献求助10
48秒前
YZChen完成签到,获得积分10
54秒前
56秒前
4114发布了新的文献求助10
56秒前
1分钟前
Nomb1发布了新的文献求助10
1分钟前
在水一方应助留着待会儿采纳,获得10
1分钟前
共享精神应助Nomb1采纳,获得10
1分钟前
1分钟前
深情安青应助小白果果采纳,获得10
1分钟前
1分钟前
caoju发布了新的文献求助10
1分钟前
Chen完成签到,获得积分10
1分钟前
飘逸的雁露完成签到,获得积分10
1分钟前
caoju完成签到,获得积分10
1分钟前
Jasper应助AA采纳,获得10
1分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502750
求助须知:如何正确求助?哪些是违规求助? 4598475
关于积分的说明 14464218
捐赠科研通 4532060
什么是DOI,文献DOI怎么找? 2483834
邀请新用户注册赠送积分活动 1467025
关于科研通互助平台的介绍 1439669