Artificial intelligence evaluation of coronary computed tomography angiography for coronary stenosis classification and diagnosis

医学 狭窄 冠状动脉疾病 计算机辅助设计 放射科 冠状动脉造影 部分流量储备 计算机断层血管造影 科恩卡帕 心脏病学 人工智能 血管造影 内科学 机器学习 计算机科学 心肌梗塞 工程类 工程制图
作者
Dan‐Ying Lee,Chun‐Chin Chang,Chieh‐Fu Ko,Yin‐Hao Lee,Yi‐Lin Tsai,Ruey‐Hsing Chou,Ting‐Yung Chang,Shu‐Mei Guo,Po‐Hsun Huang
出处
期刊:European Journal of Clinical Investigation [Wiley]
卷期号:54 (1) 被引量:5
标识
DOI:10.1111/eci.14089
摘要

Abstract Background Ruling out obstructive coronary artery disease (CAD) using coronary computed tomography angiography (CCTA) is time‐consuming and challenging. This study developed a deep learning (DL) model to assist in detecting obstructive CAD on CCTA to streamline workflows. Methods In total, 2929 DICOM files and 7945 labels were extracted from curved planar reformatted CCTA images. A modified Inception V3 model was adopted. To validate the artificial intelligence (AI) model, two cardiologists labelled and adjudicated the classification of coronary stenosis on CCTA. The model was trained to differentiate the coronary artery into binary stenosis classifications <50% and ≥50% stenosis. Using the quantitative coronary angiography (QCA) consensus results as a reference standard, the performance of the AI model and CCTA radiology readers was compared by calculating Cohen's kappa coefficients at patient and vessel levels. The net reclassification index was used to evaluate the net benefit of the DL model. Results The diagnostic accuracy of the AI model was 92.3% and 88.4% at the patient and vessel levels, respectively. Compared with CCTA radiology readers, the AI model had a better agreement for binary stenosis classification at both patient and vessel levels (Cohen kappa coefficient: .79 vs. .39 and .77 vs. .40, p < .0001). The AI model also exhibited significantly improved model discrimination and reclassification (Net reclassification index = .350; Z = 4.194; p < .001). Conclusions The developed AI model identified obstructive CAD, and the model results correlated well with QCA results. Incorporating the model into the reporting system of CCTA may improve workflows.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助酥酥脆采纳,获得10
刚刚
哇塞爹发布了新的文献求助10
刚刚
打打应助扬子采纳,获得10
刚刚
cocobear完成签到 ,获得积分10
1秒前
Lucas应助Xide采纳,获得30
1秒前
1秒前
李佳楠完成签到,获得积分20
1秒前
ggp完成签到,获得积分0
1秒前
自行车v完成签到,获得积分10
1秒前
1秒前
hhhh完成签到 ,获得积分10
2秒前
早川木槿完成签到,获得积分10
2秒前
Kauio完成签到,获得积分10
3秒前
aaabbb发布了新的文献求助10
3秒前
研友_VZG7GZ应助Daisy采纳,获得10
3秒前
缥缈书本完成签到 ,获得积分10
3秒前
obto完成签到,获得积分20
3秒前
campus完成签到,获得积分10
3秒前
LT完成签到,获得积分10
4秒前
JamesPei应助粱乘风采纳,获得10
4秒前
夏竟添完成签到,获得积分10
4秒前
AA18236931952发布了新的文献求助10
4秒前
murmur完成签到,获得积分10
4秒前
李佳楠发布了新的文献求助10
4秒前
小包完成签到,获得积分10
5秒前
5秒前
哇哇哇完成签到 ,获得积分10
5秒前
寒冷茈完成签到,获得积分20
5秒前
WW完成签到,获得积分10
6秒前
满锅发布了新的文献求助10
6秒前
6秒前
阳阳语晗完成签到,获得积分10
6秒前
留胡子的书白完成签到,获得积分10
6秒前
6秒前
LX发布了新的文献求助10
7秒前
7秒前
8秒前
junyang完成签到,获得积分10
8秒前
tian发布了新的文献求助10
8秒前
Lily完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005