亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial intelligence evaluation of coronary computed tomography angiography for coronary stenosis classification and diagnosis

医学 狭窄 冠状动脉疾病 计算机辅助设计 放射科 冠状动脉造影 部分流量储备 计算机断层血管造影 科恩卡帕 心脏病学 人工智能 血管造影 内科学 机器学习 计算机科学 心肌梗塞 工程类 工程制图
作者
Dan‐Ying Lee,Chun‐Chin Chang,Chieh‐Fu Ko,Yin‐Hao Lee,Yi‐Lin Tsai,Ruey‐Hsing Chou,Ting‐Yung Chang,Shu‐Mei Guo,Po‐Hsun Huang
出处
期刊:European Journal of Clinical Investigation [Wiley]
卷期号:54 (1) 被引量:5
标识
DOI:10.1111/eci.14089
摘要

Abstract Background Ruling out obstructive coronary artery disease (CAD) using coronary computed tomography angiography (CCTA) is time‐consuming and challenging. This study developed a deep learning (DL) model to assist in detecting obstructive CAD on CCTA to streamline workflows. Methods In total, 2929 DICOM files and 7945 labels were extracted from curved planar reformatted CCTA images. A modified Inception V3 model was adopted. To validate the artificial intelligence (AI) model, two cardiologists labelled and adjudicated the classification of coronary stenosis on CCTA. The model was trained to differentiate the coronary artery into binary stenosis classifications <50% and ≥50% stenosis. Using the quantitative coronary angiography (QCA) consensus results as a reference standard, the performance of the AI model and CCTA radiology readers was compared by calculating Cohen's kappa coefficients at patient and vessel levels. The net reclassification index was used to evaluate the net benefit of the DL model. Results The diagnostic accuracy of the AI model was 92.3% and 88.4% at the patient and vessel levels, respectively. Compared with CCTA radiology readers, the AI model had a better agreement for binary stenosis classification at both patient and vessel levels (Cohen kappa coefficient: .79 vs. .39 and .77 vs. .40, p < .0001). The AI model also exhibited significantly improved model discrimination and reclassification (Net reclassification index = .350; Z = 4.194; p < .001). Conclusions The developed AI model identified obstructive CAD, and the model results correlated well with QCA results. Incorporating the model into the reporting system of CCTA may improve workflows.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助科研通管家采纳,获得10
7秒前
shhoing应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
Ren完成签到 ,获得积分10
24秒前
caowen完成签到 ,获得积分10
26秒前
科研通AI6应助羟基磷酸钙采纳,获得10
1分钟前
1分钟前
杰尼龟的鱼完成签到 ,获得积分10
1分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
2分钟前
上官若男应助羟基磷酸钙采纳,获得10
3分钟前
alter_mu完成签到,获得积分10
3分钟前
3分钟前
3分钟前
大胆的音响完成签到 ,获得积分10
3分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
AllIN发布了新的文献求助10
4分钟前
羟基磷酸钙完成签到 ,获得积分10
4分钟前
wanci应助Trip_wyb采纳,获得10
4分钟前
在水一方应助AllIN采纳,获得10
4分钟前
4分钟前
Trip_wyb发布了新的文献求助10
4分钟前
小欧完成签到 ,获得积分10
5分钟前
能干的荆完成签到 ,获得积分10
6分钟前
6分钟前
科研通AI2S应助Li采纳,获得10
6分钟前
6分钟前
范ER完成签到 ,获得积分10
7分钟前
科研通AI2S应助Li采纳,获得10
7分钟前
慕青应助aki采纳,获得10
7分钟前
7分钟前
8分钟前
shhoing应助科研通管家采纳,获得10
8分钟前
开心每一天完成签到 ,获得积分10
8分钟前
故意的小萱完成签到,获得积分20
8分钟前
科研通AI2S应助Li采纳,获得10
8分钟前
瑾瑜玉完成签到 ,获得积分10
9分钟前
FashionBoy应助NatureEnergy采纳,获得30
9分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558537
求助须知:如何正确求助?哪些是违规求助? 4643629
关于积分的说明 14671295
捐赠科研通 4584946
什么是DOI,文献DOI怎么找? 2515238
邀请新用户注册赠送积分活动 1489315
关于科研通互助平台的介绍 1460000