清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Artificial intelligence evaluation of coronary computed tomography angiography for coronary stenosis classification and diagnosis

医学 狭窄 冠状动脉疾病 计算机辅助设计 放射科 冠状动脉造影 部分流量储备 计算机断层血管造影 科恩卡帕 心脏病学 人工智能 血管造影 内科学 机器学习 计算机科学 心肌梗塞 工程类 工程制图
作者
Dan‐Ying Lee,Chun‐Chin Chang,Chieh‐Fu Ko,Yin‐Hao Lee,Yi‐Lin Tsai,Ruey‐Hsing Chou,Ting‐Yung Chang,Shu‐Mei Guo,Po‐Hsun Huang
出处
期刊:European Journal of Clinical Investigation [Wiley]
卷期号:54 (1) 被引量:5
标识
DOI:10.1111/eci.14089
摘要

Abstract Background Ruling out obstructive coronary artery disease (CAD) using coronary computed tomography angiography (CCTA) is time‐consuming and challenging. This study developed a deep learning (DL) model to assist in detecting obstructive CAD on CCTA to streamline workflows. Methods In total, 2929 DICOM files and 7945 labels were extracted from curved planar reformatted CCTA images. A modified Inception V3 model was adopted. To validate the artificial intelligence (AI) model, two cardiologists labelled and adjudicated the classification of coronary stenosis on CCTA. The model was trained to differentiate the coronary artery into binary stenosis classifications <50% and ≥50% stenosis. Using the quantitative coronary angiography (QCA) consensus results as a reference standard, the performance of the AI model and CCTA radiology readers was compared by calculating Cohen's kappa coefficients at patient and vessel levels. The net reclassification index was used to evaluate the net benefit of the DL model. Results The diagnostic accuracy of the AI model was 92.3% and 88.4% at the patient and vessel levels, respectively. Compared with CCTA radiology readers, the AI model had a better agreement for binary stenosis classification at both patient and vessel levels (Cohen kappa coefficient: .79 vs. .39 and .77 vs. .40, p < .0001). The AI model also exhibited significantly improved model discrimination and reclassification (Net reclassification index = .350; Z = 4.194; p < .001). Conclusions The developed AI model identified obstructive CAD, and the model results correlated well with QCA results. Incorporating the model into the reporting system of CCTA may improve workflows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
43秒前
45秒前
56秒前
axiao完成签到,获得积分10
59秒前
asdf发布了新的文献求助30
1分钟前
1分钟前
axiao发布了新的文献求助10
1分钟前
asdf完成签到,获得积分10
1分钟前
CodeCraft应助whiter采纳,获得10
1分钟前
1分钟前
1分钟前
whiter发布了新的文献求助10
1分钟前
whiter完成签到,获得积分10
1分钟前
lanxinge完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
liwang9301完成签到,获得积分10
3分钟前
3分钟前
碧蓝雁风完成签到 ,获得积分10
4分钟前
几两完成签到 ,获得积分10
4分钟前
4分钟前
yxl要顺利毕业_发6篇C完成签到,获得积分10
4分钟前
Setlla完成签到 ,获得积分10
4分钟前
Hello应助山间的话采纳,获得10
4分钟前
4分钟前
山间的话发布了新的文献求助10
5分钟前
howgoods完成签到 ,获得积分10
5分钟前
6分钟前
桥西小河完成签到 ,获得积分10
6分钟前
李健的小迷弟应助lovelife采纳,获得10
6分钟前
7分钟前
小嚣张完成签到,获得积分10
7分钟前
充电宝应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
7分钟前
alanbike完成签到,获得积分10
7分钟前
7分钟前
7分钟前
华老师发布了新的文献求助10
8分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965722
求助须知:如何正确求助?哪些是违规求助? 3510967
关于积分的说明 11155723
捐赠科研通 3245436
什么是DOI,文献DOI怎么找? 1792903
邀请新用户注册赠送积分活动 874184
科研通“疑难数据库(出版商)”最低求助积分说明 804229