Artificial intelligence evaluation of coronary computed tomography angiography for coronary stenosis classification and diagnosis

医学 狭窄 冠状动脉疾病 计算机辅助设计 放射科 冠状动脉造影 部分流量储备 计算机断层血管造影 科恩卡帕 心脏病学 人工智能 血管造影 内科学 机器学习 计算机科学 心肌梗塞 工程制图 工程类
作者
Dan‐Ying Lee,Chun‐Chin Chang,Chieh‐Fu Ko,Yin‐Hao Lee,Yi‐Lin Tsai,Ruey‐Hsing Chou,Ting‐Yung Chang,Shu‐Mei Guo,Po‐Hsun Huang
出处
期刊:European Journal of Clinical Investigation [Wiley]
卷期号:54 (1) 被引量:5
标识
DOI:10.1111/eci.14089
摘要

Abstract Background Ruling out obstructive coronary artery disease (CAD) using coronary computed tomography angiography (CCTA) is time‐consuming and challenging. This study developed a deep learning (DL) model to assist in detecting obstructive CAD on CCTA to streamline workflows. Methods In total, 2929 DICOM files and 7945 labels were extracted from curved planar reformatted CCTA images. A modified Inception V3 model was adopted. To validate the artificial intelligence (AI) model, two cardiologists labelled and adjudicated the classification of coronary stenosis on CCTA. The model was trained to differentiate the coronary artery into binary stenosis classifications <50% and ≥50% stenosis. Using the quantitative coronary angiography (QCA) consensus results as a reference standard, the performance of the AI model and CCTA radiology readers was compared by calculating Cohen's kappa coefficients at patient and vessel levels. The net reclassification index was used to evaluate the net benefit of the DL model. Results The diagnostic accuracy of the AI model was 92.3% and 88.4% at the patient and vessel levels, respectively. Compared with CCTA radiology readers, the AI model had a better agreement for binary stenosis classification at both patient and vessel levels (Cohen kappa coefficient: .79 vs. .39 and .77 vs. .40, p < .0001). The AI model also exhibited significantly improved model discrimination and reclassification (Net reclassification index = .350; Z = 4.194; p < .001). Conclusions The developed AI model identified obstructive CAD, and the model results correlated well with QCA results. Incorporating the model into the reporting system of CCTA may improve workflows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lz关注了科研通微信公众号
2秒前
勤恳的磬发布了新的文献求助10
2秒前
加肥猫1992完成签到,获得积分10
3秒前
邵翎365发布了新的文献求助10
3秒前
young发布了新的文献求助60
3秒前
cmwang完成签到,获得积分10
4秒前
夏青荷发布了新的文献求助10
4秒前
冒险寻羊完成签到,获得积分10
5秒前
小军完成签到,获得积分10
5秒前
7秒前
8秒前
9秒前
逢考必过完成签到 ,获得积分10
10秒前
11秒前
邵翎365完成签到,获得积分10
12秒前
零碎的岛屿应助雍以菱采纳,获得10
12秒前
12秒前
13秒前
艾尔奥恩发布了新的文献求助50
13秒前
15秒前
15秒前
Loik发布了新的文献求助10
17秒前
雨停了发布了新的文献求助10
17秒前
研友_VZG7GZ应助顺心的水之采纳,获得10
17秒前
18秒前
不配.应助清脆的书桃采纳,获得10
19秒前
19秒前
自建完成签到,获得积分10
20秒前
cc发布了新的文献求助30
21秒前
21秒前
汉堡包应助Loik采纳,获得10
23秒前
23秒前
25秒前
认真依琴发布了新的文献求助10
27秒前
27秒前
长情契完成签到,获得积分10
27秒前
科研通AI2S应助勤劳的嵩采纳,获得10
28秒前
Jasper应助j_采纳,获得10
29秒前
无风发布了新的文献求助10
30秒前
今后应助玛珂巴巴珂采纳,获得10
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136176
求助须知:如何正确求助?哪些是违规求助? 2787079
关于积分的说明 7780454
捐赠科研通 2443217
什么是DOI,文献DOI怎么找? 1298964
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870