Artificial intelligence evaluation of coronary computed tomography angiography for coronary stenosis classification and diagnosis

医学 狭窄 冠状动脉疾病 计算机辅助设计 放射科 冠状动脉造影 部分流量储备 计算机断层血管造影 科恩卡帕 心脏病学 人工智能 血管造影 内科学 机器学习 计算机科学 心肌梗塞 工程制图 工程类
作者
Dan‐Ying Lee,Chun‐Chin Chang,Chieh‐Fu Ko,Yin‐Hao Lee,Yi‐Lin Tsai,Ruey‐Hsing Chou,Ting‐Yung Chang,Shu‐Mei Guo,Po‐Hsun Huang
出处
期刊:European Journal of Clinical Investigation [Wiley]
卷期号:54 (1) 被引量:5
标识
DOI:10.1111/eci.14089
摘要

Abstract Background Ruling out obstructive coronary artery disease (CAD) using coronary computed tomography angiography (CCTA) is time‐consuming and challenging. This study developed a deep learning (DL) model to assist in detecting obstructive CAD on CCTA to streamline workflows. Methods In total, 2929 DICOM files and 7945 labels were extracted from curved planar reformatted CCTA images. A modified Inception V3 model was adopted. To validate the artificial intelligence (AI) model, two cardiologists labelled and adjudicated the classification of coronary stenosis on CCTA. The model was trained to differentiate the coronary artery into binary stenosis classifications <50% and ≥50% stenosis. Using the quantitative coronary angiography (QCA) consensus results as a reference standard, the performance of the AI model and CCTA radiology readers was compared by calculating Cohen's kappa coefficients at patient and vessel levels. The net reclassification index was used to evaluate the net benefit of the DL model. Results The diagnostic accuracy of the AI model was 92.3% and 88.4% at the patient and vessel levels, respectively. Compared with CCTA radiology readers, the AI model had a better agreement for binary stenosis classification at both patient and vessel levels (Cohen kappa coefficient: .79 vs. .39 and .77 vs. .40, p < .0001). The AI model also exhibited significantly improved model discrimination and reclassification (Net reclassification index = .350; Z = 4.194; p < .001). Conclusions The developed AI model identified obstructive CAD, and the model results correlated well with QCA results. Incorporating the model into the reporting system of CCTA may improve workflows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小蘑菇应助晚秋采纳,获得10
1秒前
沉默的天蓝完成签到,获得积分10
1秒前
2秒前
bkagyin应助好好采纳,获得10
2秒前
2秒前
鲜艳的访风完成签到,获得积分10
3秒前
Zephyr完成签到,获得积分10
3秒前
3秒前
叶子发布了新的文献求助10
3秒前
高高海安完成签到,获得积分20
3秒前
4秒前
4秒前
5秒前
科研通AI5应助dt采纳,获得10
6秒前
qdy发布了新的文献求助10
6秒前
林智卓完成签到,获得积分10
6秒前
闫木木完成签到,获得积分10
6秒前
6秒前
木子121发布了新的文献求助10
7秒前
7秒前
8秒前
欣慰碧彤发布了新的文献求助10
8秒前
ding应助啊哦采纳,获得10
8秒前
曼凡发布了新的文献求助150
8秒前
9秒前
9秒前
12366666发布了新的文献求助10
9秒前
9秒前
ardejiang发布了新的文献求助10
10秒前
草莓熊发布了新的文献求助10
10秒前
曹乐完成签到,获得积分10
10秒前
呀呀呀完成签到,获得积分10
10秒前
11秒前
11秒前
科研通AI5应助最帅阿浩采纳,获得10
11秒前
ucas大菠萝发布了新的文献求助10
12秒前
12秒前
DijiaXu应助耳朵儿歌采纳,获得80
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4558868
求助须知:如何正确求助?哪些是违规求助? 3985681
关于积分的说明 12339795
捐赠科研通 3656197
什么是DOI,文献DOI怎么找? 2014213
邀请新用户注册赠送积分活动 1049037
科研通“疑难数据库(出版商)”最低求助积分说明 937443