A study on the mechanisms of teachers’ academic emotions and motivational beliefs on learning engagement in the context of online training

心理学 背景(考古学) 学生参与度 期望理论 应用心理学 数学教育 社会心理学 古生物学 生物
作者
Dongdong Zhang,Siyuan Gao,Ren Liu
出处
期刊:Frontiers in Psychology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fpsyg.2023.1255660
摘要

In the context of digital transformation of education, online training is one of the important ways for teachers to improve their professionalism and promote the quality of education. However, studies have shown that teachers' online training suffers from insufficient learning engagement and other problems, so it is crucial to explore the factors influencing teachers' learning engagement and their mechanisms of action in the context of online training.Taking 589 teachers who participated in online training as the research subjects, the study used the methods of survey research and statistical analysis to explore the influence mechanism of teachers' academic emotions and motivational beliefs on online learning engagement based on the dual perspectives of control value theory and expectancy-value theory.The study found that: (1) positive-high arousal academic emotions, training self-efficacy, and training task value significantly and positively predicted online learning engagement, respectively; (2) negative-high arousal and negative-low arousal academic emotions significantly and negatively predicted online learning engagement; (3) training self-efficacy and training task value mediated the relationship between positive-high arousal academic emotions, negative-high arousal academic emotions, negative-low arousal academic emotions and online learning engagement, respectively.The study concluded that by creating an immersive learning environment based on the educational meta universe, personalized and precise training based on big data and adaptive technologies, and establishing a multi-dimensional and three-dimensional online learning support service system, which can effectively improve teachers' online learning engagement and enhance their online training quality and effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
多金完成签到,获得积分10
4秒前
4秒前
1111完成签到,获得积分20
4秒前
4秒前
liu发布了新的文献求助10
5秒前
学术小白完成签到,获得积分10
8秒前
8秒前
烨霖完成签到,获得积分10
9秒前
葱葱不吃葱完成签到 ,获得积分10
10秒前
11发布了新的文献求助10
10秒前
派大星完成签到,获得积分10
10秒前
科目三应助好好好采纳,获得10
13秒前
pureivy22发布了新的文献求助10
14秒前
恒压供水发布了新的文献求助10
15秒前
15秒前
18秒前
18秒前
恒压供水完成签到,获得积分10
20秒前
20秒前
20秒前
21秒前
发嗲的炳发布了新的文献求助10
21秒前
21秒前
luyao970131发布了新的文献求助10
22秒前
英俊的铭应助欣喜战斗机采纳,获得10
23秒前
Erick完成签到,获得积分10
24秒前
好好好发布了新的文献求助10
25秒前
BioRick发布了新的文献求助10
25秒前
26秒前
26秒前
上官若男应助luyao970131采纳,获得10
28秒前
28秒前
星辰大海应助dabao采纳,获得10
29秒前
30秒前
32秒前
33秒前
34秒前
xhm完成签到 ,获得积分10
34秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157519
求助须知:如何正确求助?哪些是违规求助? 2808909
关于积分的说明 7879293
捐赠科研通 2467387
什么是DOI,文献DOI怎么找? 1313431
科研通“疑难数据库(出版商)”最低求助积分说明 630398
版权声明 601919