创伤性脑损伤
神经科学
海马结构
生物
海马体
转录组
再生(生物学)
爆炸伤
生物信息学
毒物控制
医学
基因
基因表达
遗传学
精神科
环境卫生
作者
Lingxuan Zhang,Qixiang Yang,Ruixuan Yuan,Manrui Li,Meili Lv,Lin Zhang,Xiaoqi Xie,Weibo Liang,Xiameng Chen
标识
DOI:10.1038/s41597-023-02552-x
摘要
As a significant type of traumatic brain injury (TBI), blast-induced traumatic brain injury (bTBI) frequently results in severe neurological and psychological impairments. Due to its unique mechanistic and clinical features, bTBI presents diagnostic and therapeutic challenges compared to other TBI forms. The hippocampus, an important site for secondary injury of bTBI, serves as a key niche for neural regeneration and repair post-injury, and is closely associated with the neurological outcomes of bTBI patients. Nonetheless, the pathophysiological alterations of hippocampus underpinning bTBI remain enigmatic, and a corresponding transcriptomic dataset for research reference is yet to be established. In this investigation, the single-nucleus RNA sequencing (snRNA-seq) technique was employed to sequence individual hippocampal nuclei of mice from bTBI and sham group. Upon stringent quality control, gene expression data from 17,278 nuclei were obtained, with the dataset's reliability substantiated through various analytical methods. This dataset holds considerable potential for exploring secondary hippocampal injury and neurogenesis mechanisms following bTBI, with important reference value for the identification of specific diagnostic and therapeutic targets for bTBI.
科研通智能强力驱动
Strongly Powered by AbleSci AI