癌症研究
生物
细胞生物学
PI3K/AKT/mTOR通路
细胞粘附
蛋白激酶B
细胞迁移
细胞生长
细胞
信号转导
外域
受体
生物化学
作者
Nisha R. Pawar,Marguerite S. Buzza,Nadire Duru,Amando A. Strong,Toni M. Antalis
标识
DOI:10.1083/jcb.202209114
摘要
The transmembrane serine protease matriptase is a key regulator of both barrier-disruptive and protective epithelial cell-cell interactions. Elevated matriptase is a consistent feature of epithelial ovarian cancers (OvCa), where multicellular spheroids shed from the primary tumor into the peritoneal cavity are critical drivers of metastasis. Dynamic cell-to-cell adhesive contacts are required for spheroid formation and maintenance. Here, we show that overactive matriptase, reflected in an increased ratio of matriptase to its inhibitor hepatocyte growth factor activator inhibitor 1 (HAI-1), disrupts cell-cell contacts to produce loose prometastatic spheroids that display increased mesothelial cell adhesion and submesothelial invasion. We show that these activities are dependent on the matriptase activation of a protease-activated receptor-2 (PAR-2) signaling pathway involving PI3K/Akt and MMP9-induced disruption of cell-cell adhesion by the release of the soluble E-cadherin ectodomain. These data reveal a novel pathological connection between matriptase activation of PAR-2 and disruption of cell-cell adhesion, and support the clinical investigation of this signaling axis as a therapeutic strategy for aggressive metastatic OvCa.
科研通智能强力驱动
Strongly Powered by AbleSci AI