Video Question Answering With Semantic Disentanglement and Reasoning

计算机科学 答疑 情报检索 自然语言处理 语义学(计算机科学) 人工智能 程序设计语言
作者
Jin Liu,Guoxiang Wang,Jialong Xie,Fengyu Zhou,Huijuan Xu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (5): 3663-3673 被引量:2
标识
DOI:10.1109/tcsvt.2023.3317447
摘要

Video question answering aims to provide correct answers given complex videos and related questions, posting high requirements of the comprehension ability in both video and language processing. Existing works phrase this task as a multi-modal fusion process by aligning the video context with the whole question, ignoring the rich semantic details of nouns and verbs separately in the multi-modal reasoning process to derive the final answer. To fill this gap, in addition to the semantic alignment of the whole sentence, we propose to disentangle the semantic understanding of language, and reason over the corresponding frame-level and motion-level video features. We design an unified multi-granularity language module of residual structure to adapt the semantic understanding at different granularity with context exchange, e.g., word-level and sentence-level. To enhance the holistic question understanding for answer prediction, we also design a contrastive sampling approach by selecting irrelevant questions as negative samples to break the intrinsic correlations between questions and answers within the dataset. Notably, our model is competent for both multiple-choice and open-ended video question answering. We further employ a pre-trained language model to retrieve relevant knowledge as candidate answer context to facilitate open-ended VideoQA. Extensive quantitative and qualitative experiments on four public datasets (NextQA, MSVD, MSRVTT, and TGIF-QA-R) demonstrate the effective and superior performance of our proposed model. Our code will be released upon the paper's acceptance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XC发布了新的文献求助30
1秒前
顾木木发布了新的文献求助10
1秒前
光风霁月完成签到,获得积分10
3秒前
沉静的唯雪应助liu采纳,获得10
3秒前
wanci应助0609采纳,获得10
4秒前
5秒前
6秒前
onmyway完成签到,获得积分10
7秒前
celine完成签到,获得积分10
7秒前
一点不懂发布了新的文献求助10
7秒前
wdd完成签到,获得积分10
7秒前
远古遗迹完成签到,获得积分10
7秒前
9秒前
烟花应助飞羽采纳,获得10
10秒前
sai发布了新的文献求助10
10秒前
海贼学术给海贼学术的求助进行了留言
11秒前
在水一方应助万雨斌采纳,获得10
11秒前
12秒前
共享精神应助nsc采纳,获得10
13秒前
赘婿应助顾木木采纳,获得30
13秒前
feige发布了新的文献求助10
14秒前
思源应助个吧小时亩半地采纳,获得10
15秒前
15秒前
润泽发布了新的文献求助10
16秒前
guguhuhu完成签到,获得积分10
17秒前
17秒前
qqsaosa发布了新的文献求助10
19秒前
pzh发布了新的文献求助10
21秒前
21秒前
boltos发布了新的文献求助20
21秒前
张姐完成签到,获得积分10
21秒前
21秒前
yuqian完成签到,获得积分10
22秒前
23秒前
zzz完成签到,获得积分10
24秒前
jeffery111发布了新的文献求助10
24秒前
24秒前
万雨斌发布了新的文献求助10
25秒前
25秒前
HongXiang Li发布了新的文献求助10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3443772
求助须知:如何正确求助?哪些是违规求助? 3039907
关于积分的说明 8978775
捐赠科研通 2728422
什么是DOI,文献DOI怎么找? 1496514
科研通“疑难数据库(出版商)”最低求助积分说明 691668
邀请新用户注册赠送积分活动 689213