A Neighborhood-Aware Graph Self-Attention Mechanism-based Pre-Training Model for Knowledge Graph Reasoning

推论 计算机科学 图形 编码 人工智能 数据挖掘 模式识别(心理学) 机器学习 理论计算机科学 数学 生物化学 基因 化学
作者
Yuejia Wu,Jian-tao Zhou
出处
期刊:Information Sciences [Elsevier BV]
卷期号:647: 119473-119473
标识
DOI:10.1016/j.ins.2023.119473
摘要

Knowledge Graph Reasoning (KGR) is an effective method to ameliorate incompleteness and sparsity problems, which infers new knowledge based on existing knowledge. The Graph Neural Network (GNN)-based approaches can obtain advanced effectiveness. However, it still suffers from some problems such as obtaining insufficient graph features, introducing noises, ignoring path connectivity, and acquiring incomplete neighborhood information. This paper proposes a neighborhood-aware (NA) graph self-attention mechanism-based pre-training model for KGR, namely NA-KGR. The proposed model is composed of two phases. The first phase is an enhanced graph attention network, which can use the weighted characteristics of its neighbors to represent and encode the entities that are most likely to have a positive effect on reasoning. The second phase is a neighborhood-aware self-attention mechanism, which makes the model more able to obtain information from the neighbor entities for inference by increasing an adaptive entity similarity matrix when calculating the attention score. Moreover, we propose a pre-training pattern based on neighborhood-aware random walk sampling and general subgraph structure sampling to improve NA-KGR's generalization ability. Extensive comparison and ablation experimental results on various benchmarks unambiguously demonstrate that the proposed NA-KGR model can obtain the state-of-the-art results of current GNN-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GooJohn发布了新的文献求助10
刚刚
NexusExplorer应助杜兰特工队采纳,获得10
1秒前
1秒前
1秒前
2秒前
FashionBoy应助鲤跃采纳,获得10
3秒前
阳光c完成签到 ,获得积分10
3秒前
威武的手链完成签到,获得积分20
4秒前
sxr完成签到,获得积分10
4秒前
zhongzihao发布了新的文献求助10
5秒前
5秒前
在水一方应助闪闪采纳,获得10
5秒前
Jay发布了新的文献求助10
6秒前
灰灰子发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
小丑鱼儿发布了新的文献求助10
9秒前
XYN1发布了新的文献求助10
9秒前
12秒前
12秒前
LiuLiu完成签到,获得积分10
13秒前
樱桃小热巴完成签到 ,获得积分10
13秒前
14秒前
14秒前
不低头完成签到,获得积分10
14秒前
大鱼完成签到,获得积分10
15秒前
15秒前
XYN1完成签到,获得积分10
15秒前
MaYue发布了新的文献求助10
16秒前
16秒前
16秒前
闪闪发布了新的文献求助10
17秒前
尊敬依珊发布了新的文献求助10
18秒前
强强完成签到,获得积分10
19秒前
阿童木发布了新的文献求助10
21秒前
迷你的冰旋完成签到,获得积分10
21秒前
慕青应助卡琳采纳,获得10
22秒前
李健的小迷弟应助gunt采纳,获得30
22秒前
Lucas应助小陈同学采纳,获得10
25秒前
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988868
求助须知:如何正确求助?哪些是违规求助? 3531255
关于积分的说明 11253071
捐赠科研通 3269858
什么是DOI,文献DOI怎么找? 1804822
邀请新用户注册赠送积分活动 881994
科研通“疑难数据库(出版商)”最低求助积分说明 809035