A Neighborhood-Aware Graph Self-Attention Mechanism-based Pre-Training Model for Knowledge Graph Reasoning

推论 计算机科学 图形 编码 人工智能 数据挖掘 模式识别(心理学) 机器学习 理论计算机科学 数学 生物化学 基因 化学
作者
Yuejia Wu,Jian-tao Zhou
出处
期刊:Information Sciences [Elsevier]
卷期号:647: 119473-119473
标识
DOI:10.1016/j.ins.2023.119473
摘要

Knowledge Graph Reasoning (KGR) is an effective method to ameliorate incompleteness and sparsity problems, which infers new knowledge based on existing knowledge. The Graph Neural Network (GNN)-based approaches can obtain advanced effectiveness. However, it still suffers from some problems such as obtaining insufficient graph features, introducing noises, ignoring path connectivity, and acquiring incomplete neighborhood information. This paper proposes a neighborhood-aware (NA) graph self-attention mechanism-based pre-training model for KGR, namely NA-KGR. The proposed model is composed of two phases. The first phase is an enhanced graph attention network, which can use the weighted characteristics of its neighbors to represent and encode the entities that are most likely to have a positive effect on reasoning. The second phase is a neighborhood-aware self-attention mechanism, which makes the model more able to obtain information from the neighbor entities for inference by increasing an adaptive entity similarity matrix when calculating the attention score. Moreover, we propose a pre-training pattern based on neighborhood-aware random walk sampling and general subgraph structure sampling to improve NA-KGR's generalization ability. Extensive comparison and ablation experimental results on various benchmarks unambiguously demonstrate that the proposed NA-KGR model can obtain the state-of-the-art results of current GNN-based methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助百里瓶窑采纳,获得10
刚刚
无花果应助shuanq采纳,获得10
1秒前
1秒前
3秒前
Akim应助日出东方小磊哥采纳,获得10
3秒前
3秒前
4秒前
4秒前
Yang完成签到,获得积分10
5秒前
5秒前
淡然寒松完成签到,获得积分10
5秒前
Zoro发布了新的文献求助10
6秒前
malucia应助Alpha采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
小蘑菇应助红小豆采纳,获得10
7秒前
7秒前
NexusExplorer应助nice采纳,获得10
7秒前
荧荧荧完成签到,获得积分10
7秒前
dudu完成签到,获得积分10
8秒前
8秒前
wwj完成签到,获得积分10
9秒前
9秒前
shengdong发布了新的文献求助20
10秒前
小学生发布了新的文献求助10
10秒前
10秒前
10秒前
叶子发布了新的文献求助20
10秒前
研友_VZG7GZ应助lv采纳,获得10
10秒前
老实的海瑶完成签到,获得积分20
10秒前
dddd完成签到 ,获得积分10
10秒前
10秒前
wcy完成签到 ,获得积分10
12秒前
12秒前
范书豪完成签到,获得积分10
12秒前
12秒前
12秒前
leiqin完成签到,获得积分10
13秒前
goldenfleece发布了新的文献求助10
13秒前
深情安青应助马丁采纳,获得10
14秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5586279
求助须知:如何正确求助?哪些是违规求助? 4669574
关于积分的说明 14778915
捐赠科研通 4619294
什么是DOI,文献DOI怎么找? 2530818
邀请新用户注册赠送积分活动 1499652
关于科研通互助平台的介绍 1467830