Democratizing Artificial Intelligence Imaging Analysis With Automated Machine Learning: Tutorial

计算机科学 人工智能 数据科学 过程(计算) 标杆管理 机器学习 业务 营销 操作系统
作者
Arun James Thirunavukarasu,Kabilan Elangovan,Laura Gutiérrez,Yong Li,I Leng Tan,Pearse A. Keane,Edward Korot,Daniel Shu Wei Ting
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:25: e49949-e49949 被引量:17
标识
DOI:10.2196/49949
摘要

Deep learning–based clinical imaging analysis underlies diagnostic artificial intelligence (AI) models, which can match or even exceed the performance of clinical experts, having the potential to revolutionize clinical practice. A wide variety of automated machine learning (autoML) platforms lower the technical barrier to entry to deep learning, extending AI capabilities to clinicians with limited technical expertise, and even autonomous foundation models such as multimodal large language models. Here, we provide a technical overview of autoML with descriptions of how autoML may be applied in education, research, and clinical practice. Each stage of the process of conducting an autoML project is outlined, with an emphasis on ethical and technical best practices. Specifically, data acquisition, data partitioning, model training, model validation, analysis, and model deployment are considered. The strengths and limitations of available code-free, code-minimal, and code-intensive autoML platforms are considered. AutoML has great potential to democratize AI in medicine, improving AI literacy by enabling “hands-on” education. AutoML may serve as a useful adjunct in research by facilitating rapid testing and benchmarking before significant computational resources are committed. AutoML may also be applied in clinical contexts, provided regulatory requirements are met. The abstraction by autoML of arduous aspects of AI engineering promotes prioritization of data set curation, supporting the transition from conventional model-driven approaches to data-centric development. To fulfill its potential, clinicians must be educated on how to apply these technologies ethically, rigorously, and effectively; this tutorial represents a comprehensive summary of relevant considerations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青阳完成签到,获得积分10
1秒前
君君完成签到,获得积分10
2秒前
3秒前
3秒前
严仁杰发布了新的文献求助50
4秒前
LLL完成签到,获得积分10
4秒前
5秒前
脑洞疼应助Panchael采纳,获得10
6秒前
chen完成签到,获得积分10
6秒前
迷人世开完成签到,获得积分10
8秒前
飞飞飞发布了新的文献求助10
8秒前
luermei发布了新的文献求助10
9秒前
打打应助君子不器采纳,获得30
9秒前
biubiubiu发布了新的文献求助10
10秒前
roblllling完成签到,获得积分10
10秒前
蕃茄可乐完成签到,获得积分10
12秒前
科研通AI5应助YMM采纳,获得10
13秒前
Wang完成签到,获得积分10
13秒前
开心的若血完成签到,获得积分10
13秒前
上官若男应助黑妹采纳,获得10
14秒前
17秒前
oceanic完成签到 ,获得积分10
18秒前
Owen应助biubiubiu采纳,获得10
20秒前
22秒前
chen完成签到 ,获得积分10
22秒前
zzz完成签到,获得积分10
22秒前
lillian完成签到,获得积分20
23秒前
23秒前
24秒前
Persevere完成签到,获得积分10
26秒前
hcjxj完成签到,获得积分10
27秒前
27秒前
28秒前
YMM发布了新的文献求助10
28秒前
mmmst完成签到,获得积分20
29秒前
黑妹发布了新的文献求助10
30秒前
圣晟胜发布了新的文献求助10
30秒前
小方发布了新的文献求助10
30秒前
maclogos发布了新的文献求助10
31秒前
冷笑完成签到,获得积分10
32秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740489
求助须知:如何正确求助?哪些是违规求助? 3283290
关于积分的说明 10034940
捐赠科研通 3000165
什么是DOI,文献DOI怎么找? 1646430
邀请新用户注册赠送积分活动 783550
科研通“疑难数据库(出版商)”最低求助积分说明 750411