亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A comparative study of the predictive value of four models for death in patients with severe burns

医学 接收机工作特性 曲线下面积 切断 逻辑回归 内科学 曲线下面积 危险分层 外科 统计 数学 量子力学 药代动力学 物理
作者
Chen Hua-yong,Xingwang Wu,Lijin Zou,Youlai Zhang,Rufei Deng,Zhenyu Jiang,Guohua Xin
出处
期刊:Burns [Elsevier BV]
卷期号:50 (3): 550-560 被引量:2
标识
DOI:10.1016/j.burns.2023.10.019
摘要

To assess the prognostic value of the Ryan score, Belgian Outcome of Burn Injury (BOBI) score,revised Baux (rBaux) score, and a new model (a Logit(P)-based scoring method created in 2020) for predicting mortality risk in patients with extremely severe burns and to conduct a comparative analysis.A retrospective analysis was conducted on 599 burn patients who met the inclusion criteria and were admitted to the burn unit of the First Affiliated Hospital of Nanchang University from 2017 to 2022. Relevant information was collected, and receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA) were plotted for each of the four models in assessing mortality in these burn patients using both age-stratified and unstratified forms. The ROC curve section was further compared with the area under the curve (AUC), optimal cutoff value, as well as its sensitivity and specificity. Additionally, the quality of the AUC was assessed using the Delong test.Among the patients who met the inclusion criteria, 532 were in the survival group and 67 in the death group. Irrespective of age stratification, the novel model exhibited superior performance with an AUC of 0.868 (95% CI: 0.838-0.894) among all four models predicting mortality risk in included patients, and also demonstrated better AUC quality than other models; the calibration curves showed that the accuracy of all four models was good; the DCA curves showed that the clinical utility of the novel model and rBuax score were better. In the comparison of four scoring models across different age groups, the new model demonstrated the largest AUC in both 0-19 years (0.954, 95% CI 0.914-0.979) and 20-59 years groups (0.838, 95% CI 0.793-0.877), while rBuax score exhibited the highest AUC in ≥ 60 years group (0.708, 95% CI of 0.602-0.800). The calibration curves showed that the four models exhibited greater accuracy within the age range of 20-59 years, while the DCA curves indicated that both the novel model and rBuax score scale displayed better prediction in both the 20-59 and ≥ 60 years groups.All four models demonstrate accurate and effective prognostication for patients with severe burns. Both the novel model and rBaux score exhibit enhanced prediction utility. In terms of the model itself alone, the new model is not simpler than, for example, the rBaux score, and whether it can be applied clinicallyinvolves further study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
feiCheung完成签到 ,获得积分10
16秒前
suki完成签到,获得积分10
22秒前
沙脑完成签到 ,获得积分10
29秒前
顺利的小蚂蚁完成签到,获得积分10
40秒前
景景景发布了新的文献求助10
56秒前
orixero应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI5应助景景景采纳,获得10
1分钟前
猫猫球完成签到 ,获得积分10
1分钟前
3分钟前
杨学清发布了新的文献求助10
3分钟前
no1lbt完成签到 ,获得积分10
3分钟前
大模型应助杨学清采纳,获得10
3分钟前
nicolaslcq完成签到,获得积分10
3分钟前
捉迷藏完成签到,获得积分10
4分钟前
火以敬完成签到,获得积分10
4分钟前
孙阳阳完成签到 ,获得积分10
5分钟前
5分钟前
小垃圾发布了新的文献求助10
5分钟前
5分钟前
chnhen发布了新的文献求助10
5分钟前
科研通AI5应助小垃圾采纳,获得10
5分钟前
yuyu完成签到,获得积分10
5分钟前
草木发布了新的文献求助10
6分钟前
研友_nVWP2Z完成签到 ,获得积分10
6分钟前
chnhen完成签到,获得积分10
7分钟前
充电宝应助科研通管家采纳,获得10
7分钟前
善学以致用应助Aqib采纳,获得10
8分钟前
xicifish完成签到,获得积分10
8分钟前
朱朱子完成签到 ,获得积分10
8分钟前
冷冷完成签到 ,获得积分10
8分钟前
ffff完成签到 ,获得积分10
8分钟前
沉默牛排完成签到 ,获得积分10
9分钟前
传奇完成签到 ,获得积分10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
科目三应助科研通管家采纳,获得10
9分钟前
莱芙完成签到 ,获得积分10
9分钟前
10分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
酷波er应助科研通管家采纳,获得10
11分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736630
求助须知:如何正确求助?哪些是违规求助? 3280593
关于积分的说明 10020088
捐赠科研通 2997293
什么是DOI,文献DOI怎么找? 1644517
邀请新用户注册赠送积分活动 782041
科研通“疑难数据库(出版商)”最低求助积分说明 749648