Supplementing the Involvement Load Hypothesis with vocabulary-use knowledge improves mobile-assisted language learners’ productive vocabulary

词汇 计算机科学 Java小程序 词汇发展 段落 语言习得 外语 词汇学习 心理学 自然语言处理 语言学 数学教育 万维网 Java 哲学 程序设计语言
作者
Guoyuhui Huang,Khe Foon Hew
出处
期刊:Computer Assisted Language Learning [Informa]
卷期号:: 1-30
标识
DOI:10.1080/09588221.2023.2269410
摘要

Over the past two decades, the Involvement Load Hypothesis (ILH) has become a popular buzzword in the field of Second Language Acquisition (SLA). Although applications of the ILH can improve students’ learning of productive vocabulary, this effect appears to be transitory. Students’ learning of productive vocabulary often fades over time, as shown in delayed productive vocabulary tests. To address this problem, the present study investigated the effect of supplementing the ILH with vocabulary-use knowledge on students’ productive vocabulary performance. We designed two WeChat applets, namely Applet 0.0 and Applet 1.0. The design of Applet 0.0 was based solely on the ILH, whereas Applet 1.0 was guided by the ILH supplemented with vocabulary-use knowledge, with the latter consisting of grammatical functions (the grammatical patterns that a word can fit into), collocations (other words that appear together with a word), and constraints on use (the situations in which a word is used). Fifty-one English foreign language undergraduates were assigned to a control group (CG) or an experimental group (EG). Both groups completed a weekly paragraph-writing task as they learned vocabulary with the applets (the CG used Applet 0.0 and the EG used Applet 1.0). The results suggested an advantage for the ILH supplemented with vocabulary-use knowledge over the ILH alone for productive vocabulary performance. Moreover, mobile-assisted language learners’ language proficiency levels did not influence the effectiveness of the ILH (with or without vocabulary-use knowledge) on productive vocabulary performance. The EG students’ perceptions of the WeChat-mediated Mobile-Assisted Language Learning approach are also discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
baobao发布了新的文献求助10
刚刚
刚刚
英俊的铭应助无心的笑蓝采纳,获得10
2秒前
2秒前
纯真送终完成签到,获得积分10
3秒前
michaelvin发布了新的文献求助10
3秒前
FashionBoy应助烂漫的以冬采纳,获得100
3秒前
王王王发布了新的文献求助10
3秒前
5秒前
5秒前
5秒前
半柚发布了新的文献求助10
5秒前
7秒前
8秒前
9秒前
领导范儿应助火星上白羊采纳,获得10
10秒前
askd不渡神明完成签到,获得积分10
12秒前
jiajiajia发布了新的文献求助10
12秒前
尔尔发布了新的文献求助10
13秒前
王王王完成签到 ,获得积分10
13秒前
所所应助朱由校采纳,获得30
13秒前
xyl_507完成签到 ,获得积分0
14秒前
14秒前
14秒前
大气依萱完成签到 ,获得积分20
16秒前
16秒前
ylf发布了新的文献求助10
16秒前
jevon应助柠檬柚子晴采纳,获得10
16秒前
16秒前
18秒前
zhizhi2021完成签到 ,获得积分10
18秒前
18秒前
123发布了新的文献求助20
19秒前
YUN发布了新的文献求助10
20秒前
20秒前
浮生发布了新的文献求助10
21秒前
22秒前
22秒前
紫梓完成签到,获得积分10
22秒前
yexiaojian发布了新的文献求助10
22秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218980
求助须知:如何正确求助?哪些是违规求助? 2867998
关于积分的说明 8159022
捐赠科研通 2535031
什么是DOI,文献DOI怎么找? 1367402
科研通“疑难数据库(出版商)”最低求助积分说明 645052
邀请新用户注册赠送积分活动 618233