Critical Review of Nanoindentation-Based Numerical Methods for Evaluating Elastoplastic Material Properties

纳米压痕 缩进 材料科学 刚度 材料性能 有限元法 机械工程 复合材料 结构工程 工程类
作者
Xu Long,Ruipeng Dong,Yuezeng Su,Chao Chang
出处
期刊:Coatings [Multidisciplinary Digital Publishing Institute]
卷期号:13 (8): 1334-1334 被引量:5
标识
DOI:10.3390/coatings13081334
摘要

It is well known that the elastoplastic properties of materials are important indicators to characterize their mechanical behaviors and are of guiding significance in the field of materials science and engineering. In recent years, the rapidly developing nanoindentation technique has been widely used to evaluate various intrinsic information regarding the elastoplastic properties and hardness of various materials such as metals, ceramics, and composites due to its high resolution, versatility, and applicability. However, the nanoindentation process of indenting materials on the nanoscale provides the measurement results, such as load-displacement curves and contact stiffness, which is challenging to analyze and interpret, especially if contained in a large amount of data. Many numerical methods, such as dimensionless analysis, machine learning, and the finite element model, have been recently proposed with the indentation techniques to further reveal the mechanical behavior of materials during nanoindentation and provide important information for material design, property optimization, and engineering applications. In addition, with the continuous development of science and technology, automation and high-throughput processing of nanoindentation experiments have become a future trend, further improving testing efficiency and data accuracy. This paper critically reviewed various numerical methods for evaluating elastoplastic constitutive properties of materials based on nanoindentation technology, which aims to provide a comprehensive understanding of the application and development trend of the nanoindentation technique and to provide guidance and reference for further research and applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈隆完成签到,获得积分10
刚刚
CipherSage应助科研通管家采纳,获得10
3秒前
3秒前
李健应助科研通管家采纳,获得10
3秒前
慕青应助单薄天蓉采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
3秒前
半城微凉应助科研通管家采纳,获得100
3秒前
Jiaming应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
water应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
所所应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
hohokuz完成签到,获得积分10
5秒前
优雅的老姆完成签到,获得积分10
5秒前
7秒前
科目三应助美好冰蓝采纳,获得10
7秒前
7秒前
司空豁完成签到,获得积分10
7秒前
小团团发布了新的文献求助50
8秒前
李昆朋完成签到,获得积分10
8秒前
呆萌幼晴完成签到,获得积分10
9秒前
平凡完成签到,获得积分10
10秒前
Hunter完成签到,获得积分10
10秒前
seven完成签到,获得积分10
10秒前
lhl完成签到,获得积分10
10秒前
iNk应助马某采纳,获得10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965864
求助须知:如何正确求助?哪些是违规求助? 3511176
关于积分的说明 11156785
捐赠科研通 3245809
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804278