Critical Review of Nanoindentation-Based Numerical Methods for Evaluating Elastoplastic Material Properties

纳米压痕 缩进 材料科学 刚度 材料性能 有限元法 机械工程 复合材料 结构工程 工程类
作者
Xu Long,Ruipeng Dong,Yuezeng Su,Chao Chang
出处
期刊:Coatings [MDPI AG]
卷期号:13 (8): 1334-1334 被引量:5
标识
DOI:10.3390/coatings13081334
摘要

It is well known that the elastoplastic properties of materials are important indicators to characterize their mechanical behaviors and are of guiding significance in the field of materials science and engineering. In recent years, the rapidly developing nanoindentation technique has been widely used to evaluate various intrinsic information regarding the elastoplastic properties and hardness of various materials such as metals, ceramics, and composites due to its high resolution, versatility, and applicability. However, the nanoindentation process of indenting materials on the nanoscale provides the measurement results, such as load-displacement curves and contact stiffness, which is challenging to analyze and interpret, especially if contained in a large amount of data. Many numerical methods, such as dimensionless analysis, machine learning, and the finite element model, have been recently proposed with the indentation techniques to further reveal the mechanical behavior of materials during nanoindentation and provide important information for material design, property optimization, and engineering applications. In addition, with the continuous development of science and technology, automation and high-throughput processing of nanoindentation experiments have become a future trend, further improving testing efficiency and data accuracy. This paper critically reviewed various numerical methods for evaluating elastoplastic constitutive properties of materials based on nanoindentation technology, which aims to provide a comprehensive understanding of the application and development trend of the nanoindentation technique and to provide guidance and reference for further research and applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一别如斯完成签到,获得积分10
刚刚
资浩阑完成签到,获得积分10
刚刚
刚刚
写论文发布了新的文献求助30
刚刚
刚刚
Nancy完成签到,获得积分10
1秒前
zhouzhou完成签到,获得积分10
3秒前
NE关闭了NE文献求助
3秒前
lizzzzzz发布了新的文献求助10
4秒前
一别如斯发布了新的文献求助10
4秒前
研小白发布了新的文献求助10
5秒前
mhl11应助jun采纳,获得50
5秒前
坚强的广山应助zhx采纳,获得200
5秒前
xingxing完成签到,获得积分10
6秒前
开心向真完成签到 ,获得积分10
6秒前
6秒前
Ava应助团子采纳,获得10
6秒前
慕青应助立华奏采纳,获得10
7秒前
毛豆完成签到,获得积分0
7秒前
8秒前
9秒前
Akim应助M3L2采纳,获得30
10秒前
10秒前
Finger发布了新的文献求助10
10秒前
活力小鸽子完成签到,获得积分10
11秒前
期望应助wangz采纳,获得20
12秒前
试验顺利发布了新的文献求助10
12秒前
爱撒娇的橘子完成签到,获得积分10
13秒前
所所应助Tumbleweed668采纳,获得10
13秒前
共享精神应助加贺采纳,获得10
13秒前
朱珠贝发布了新的文献求助30
13秒前
老迟到的钢铁侠完成签到,获得积分10
14秒前
我是老大应助Matthewwt采纳,获得10
14秒前
14秒前
11111111111发布了新的文献求助10
15秒前
顾阿秀完成签到 ,获得积分10
16秒前
Ding-Ding完成签到,获得积分10
17秒前
xiaohaitao发布了新的文献求助10
17秒前
万能图书馆应助欧阳采纳,获得10
18秒前
托丽莲睡拿完成签到,获得积分10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304180
求助须知:如何正确求助?哪些是违规求助? 2938173
关于积分的说明 8487427
捐赠科研通 2612463
什么是DOI,文献DOI怎么找? 1426725
科研通“疑难数据库(出版商)”最低求助积分说明 662793
邀请新用户注册赠送积分活动 647344