Object-Level Attention Prediction for Drivers in the Information-Rich Traffic Environment

计算机科学 人工智能 认知 聚类分析 感知 可视化 机器学习 模式识别(心理学) 生物 神经科学
作者
Qingxiao Liu,Hui Yao,Chao Lu,H. Liu,Yangtian Yi,Huiyan Chen
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:71 (6): 6396-6406
标识
DOI:10.1109/tie.2023.3294547
摘要

An object-level attention prediction framework for drivers in the urban environment with rich semantic and motion information is proposed in this article. The proposed framework is based on the visual working memory mechanism, which decomposes the perception process into three phases, external stimuli, cognitive constructing, and memory search. In the external stimuli phase, semantic and motion information of surrounding objects is obtained. In the cognitive constructing phase, the neighbor-based hierarchical clustering method is applied to extract both independent and dependent features of traffic participants and driving events. In the memory search phase, the heterogeneous motif graph neural network is utilized to construct visual memory layers and integrate multilevel features for attention reasoning. Finally, the feature embedding is fed into a multilayer perceptron to predict the object-level visual attention. Training and testing data are collected from crowded and dynamic traffic scenes. Experimental results show that the proposed framework can achieve a superior object-level prediction performance in the information-rich environments compared with the state-of-the-art methods. In addition, the proposed framework can reduce the time bias of visual attention effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
cc发布了新的文献求助10
1秒前
1秒前
fengdengjin发布了新的文献求助10
2秒前
靓丽的沁完成签到,获得积分10
2秒前
3秒前
4秒前
研友_VZG7GZ应助粒粒采纳,获得10
4秒前
4秒前
星辰大海应助ZXRGXY采纳,获得10
4秒前
4秒前
ardejiang发布了新的文献求助10
5秒前
土豆发布了新的文献求助10
5秒前
6秒前
lms发布了新的文献求助10
6秒前
8秒前
勇哥发布了新的文献求助10
8秒前
Liyuan发布了新的文献求助30
8秒前
噜啦啦完成签到,获得积分10
8秒前
生动夜天关注了科研通微信公众号
8秒前
8秒前
susu完成签到 ,获得积分10
9秒前
10秒前
Suraim完成签到,获得积分10
10秒前
酷波er应助lms采纳,获得10
11秒前
11秒前
xgx984完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
研友_VZG7GZ应助凭亿近人采纳,获得10
14秒前
绛仙旧友完成签到,获得积分10
14秒前
yel完成签到,获得积分10
15秒前
15秒前
DijiaXu应助TY采纳,获得10
16秒前
缓慢沁完成签到,获得积分10
16秒前
丘比特应助LY采纳,获得10
17秒前
ZXRGXY发布了新的文献求助10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Handbook of Organizational Communication: An Interdisciplinary Perspective 400
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4558607
求助须知:如何正确求助?哪些是违规求助? 3985544
关于积分的说明 12339263
捐赠科研通 3656005
什么是DOI,文献DOI怎么找? 2014096
邀请新用户注册赠送积分活动 1048954
科研通“疑难数据库(出版商)”最低求助积分说明 937316