Object-Level Attention Prediction for Drivers in the Information-Rich Traffic Environment

计算机科学 人工智能 认知 聚类分析 感知 可视化 机器学习 模式识别(心理学) 生物 神经科学
作者
Qingxiao Liu,Hui Yao,Chao Lu,H. Liu,Yangtian Yi,Huiyan Chen
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:71 (6): 6396-6406
标识
DOI:10.1109/tie.2023.3294547
摘要

An object-level attention prediction framework for drivers in the urban environment with rich semantic and motion information is proposed in this article. The proposed framework is based on the visual working memory mechanism, which decomposes the perception process into three phases, external stimuli, cognitive constructing, and memory search. In the external stimuli phase, semantic and motion information of surrounding objects is obtained. In the cognitive constructing phase, the neighbor-based hierarchical clustering method is applied to extract both independent and dependent features of traffic participants and driving events. In the memory search phase, the heterogeneous motif graph neural network is utilized to construct visual memory layers and integrate multilevel features for attention reasoning. Finally, the feature embedding is fed into a multilayer perceptron to predict the object-level visual attention. Training and testing data are collected from crowded and dynamic traffic scenes. Experimental results show that the proposed framework can achieve a superior object-level prediction performance in the information-rich environments compared with the state-of-the-art methods. In addition, the proposed framework can reduce the time bias of visual attention effectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
生动觅柔完成签到,获得积分10
8秒前
Lucas应助lulu采纳,获得10
9秒前
科研通AI6应助sssshhh采纳,获得10
12秒前
妞妞完成签到,获得积分10
17秒前
19秒前
游侠EX发布了新的文献求助10
19秒前
大个应助拼搏问薇采纳,获得10
20秒前
20秒前
20秒前
zxhhm完成签到,获得积分10
22秒前
受伤破茧发布了新的文献求助10
23秒前
ding应助carl采纳,获得10
24秒前
栀蓝完成签到 ,获得积分10
24秒前
26秒前
Zjn-发布了新的文献求助10
27秒前
白白发布了新的文献求助10
31秒前
31秒前
酷炫的幻丝完成签到 ,获得积分10
32秒前
刘英丽发布了新的文献求助50
32秒前
科目三应助科研通管家采纳,获得10
32秒前
蓝天应助科研通管家采纳,获得10
32秒前
大个应助科研通管家采纳,获得10
32秒前
Verity应助科研通管家采纳,获得10
32秒前
科研通AI6应助科研通管家采纳,获得10
32秒前
科研通AI6应助科研通管家采纳,获得10
32秒前
Ava应助科研通管家采纳,获得10
32秒前
蓝天应助科研通管家采纳,获得10
32秒前
32秒前
拼搏应助科研通管家采纳,获得10
32秒前
田様应助科研通管家采纳,获得10
32秒前
在水一方应助科研通管家采纳,获得10
33秒前
Hello应助科研通管家采纳,获得10
33秒前
Orange应助科研通管家采纳,获得30
33秒前
无极微光应助科研通管家采纳,获得40
33秒前
脑洞疼应助科研通管家采纳,获得10
33秒前
orixero应助科研通管家采纳,获得10
33秒前
蓝天应助科研通管家采纳,获得10
33秒前
香蕉觅云应助科研通管家采纳,获得10
33秒前
Tamarin应助科研通管家采纳,获得10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557938
求助须知:如何正确求助?哪些是违规求助? 4642910
关于积分的说明 14669614
捐赠科研通 4584414
什么是DOI,文献DOI怎么找? 2514801
邀请新用户注册赠送积分活动 1488970
关于科研通互助平台的介绍 1459614