亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dual Cross-Attention Multi-Stage Embedding Network for Low-Light Image Enhancement

计算机科学 人工智能 计算机视觉 编码器 图像质量 能见度 嵌入 特征提取 像素 注意力网络 模式识别(心理学) 图像(数学) 地理 操作系统 气象学
作者
Junyu Fan,Jinjiang Li,Zhen Hua
出处
期刊:Journal of Circuits, Systems, and Computers [World Scientific]
卷期号:33 (07)
标识
DOI:10.1142/s0218126624501172
摘要

The low-light image enhancement task aims to improve the visibility of information in the dark to obtain more data and utilize it, while also improving the visual quality of the image. In this paper, we propose a dual cross-attention multi-stage embedding network (DCMENet) for fast and accurate enhancement of low-light images into high-quality images with high visibility. The problem that enhanced images tend to have more noise in them, which affects the image quality, is improved by introducing an attention mechanism in the encoder–decoder structure. In addition, the encoder–decoder can focus most of its attention on the dark areas of the image and better attend to the detailed features in the image that are obscured by the dark areas. In particular, the poor performance of the Transformer when the dataset size is small is solved by fusing the CNN-Attention and Transformer in the encoder. Considering the purpose of the low-light image enhancement task, we raise the importance of recovering image detail information to the same level as reconstructing the lighting. For features such as texture details in images, cascade extraction using spatial attention and pixel attention can reduce the model complexity while the performance is also improved. Finally, the global features obtained by the encoder–decoder are fused into the shallow feature extraction structure to reconstruct the illumination while guiding the network for the focused extraction of information in the dark. The proposed DCMENet achieves the best results in both objective quality assessment and subjective evaluation, while for the computer vision tasks working in low-light environments as well, the enhanced images using the DCMENet proposed in this paper show the best performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鹿芗泽发布了新的文献求助10
刚刚
敬业乐群完成签到,获得积分10
刚刚
mumu完成签到,获得积分10
2秒前
月关完成签到 ,获得积分10
7秒前
晚街听风完成签到 ,获得积分10
16秒前
繁星背后完成签到 ,获得积分10
18秒前
19秒前
柠檬树发布了新的文献求助10
22秒前
无花果应助刘言采纳,获得10
29秒前
坚强觅珍完成签到 ,获得积分10
38秒前
44秒前
Lan完成签到 ,获得积分10
45秒前
欣慰小蕊完成签到,获得积分10
45秒前
CHORHIN发布了新的文献求助10
45秒前
Alpha完成签到 ,获得积分10
46秒前
48秒前
刘言发布了新的文献求助10
48秒前
宝贝完成签到 ,获得积分10
49秒前
50秒前
54秒前
zzy发布了新的文献求助10
54秒前
ll发布了新的文献求助10
55秒前
58秒前
58秒前
CodeCraft应助madoudou采纳,获得10
59秒前
刘言完成签到,获得积分20
1分钟前
1分钟前
守一完成签到,获得积分10
1分钟前
Nick_YFWS完成签到,获得积分10
1分钟前
无花果应助榴莲柿子茶采纳,获得10
1分钟前
CHORHIN完成签到,获得积分10
1分钟前
1分钟前
1分钟前
烟花应助TT采纳,获得10
1分钟前
大龙完成签到 ,获得积分10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
Leonard应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458817
求助须知:如何正确求助?哪些是违规求助? 4564825
关于积分的说明 14296985
捐赠科研通 4489857
什么是DOI,文献DOI怎么找? 2459372
邀请新用户注册赠送积分活动 1449054
关于科研通互助平台的介绍 1424535