Dual Cross-Attention Multi-Stage Embedding Network for Low-Light Image Enhancement

计算机科学 人工智能 计算机视觉 编码器 图像质量 能见度 嵌入 特征提取 像素 注意力网络 模式识别(心理学) 图像(数学) 地理 气象学 操作系统
作者
Junyu Fan,Jinjiang Li,Zhen Hua
出处
期刊:Journal of Circuits, Systems, and Computers [World Scientific]
卷期号:33 (07)
标识
DOI:10.1142/s0218126624501172
摘要

The low-light image enhancement task aims to improve the visibility of information in the dark to obtain more data and utilize it, while also improving the visual quality of the image. In this paper, we propose a dual cross-attention multi-stage embedding network (DCMENet) for fast and accurate enhancement of low-light images into high-quality images with high visibility. The problem that enhanced images tend to have more noise in them, which affects the image quality, is improved by introducing an attention mechanism in the encoder–decoder structure. In addition, the encoder–decoder can focus most of its attention on the dark areas of the image and better attend to the detailed features in the image that are obscured by the dark areas. In particular, the poor performance of the Transformer when the dataset size is small is solved by fusing the CNN-Attention and Transformer in the encoder. Considering the purpose of the low-light image enhancement task, we raise the importance of recovering image detail information to the same level as reconstructing the lighting. For features such as texture details in images, cascade extraction using spatial attention and pixel attention can reduce the model complexity while the performance is also improved. Finally, the global features obtained by the encoder–decoder are fused into the shallow feature extraction structure to reconstruct the illumination while guiding the network for the focused extraction of information in the dark. The proposed DCMENet achieves the best results in both objective quality assessment and subjective evaluation, while for the computer vision tasks working in low-light environments as well, the enhanced images using the DCMENet proposed in this paper show the best performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西西完成签到,获得积分10
2秒前
科研通AI2S应助bgt采纳,获得10
2秒前
2秒前
3秒前
大喜完成签到,获得积分10
3秒前
3秒前
爱因斯宣发布了新的文献求助10
3秒前
T拐拐发布了新的文献求助10
4秒前
saajim发布了新的文献求助10
4秒前
WQY完成签到,获得积分10
4秒前
共享精神应助威武的冷风采纳,获得10
4秒前
5秒前
老实巴交完成签到,获得积分10
6秒前
6秒前
6秒前
vinecho发布了新的文献求助30
6秒前
7秒前
tian完成签到,获得积分0
7秒前
7秒前
羞涩的渊思完成签到 ,获得积分10
8秒前
李爱国应助JoshuaChen采纳,获得10
8秒前
文章刻骨几人知完成签到,获得积分10
8秒前
一颗煤炭完成签到 ,获得积分10
9秒前
123发布了新的文献求助10
9秒前
9秒前
NexusExplorer应助lx840518采纳,获得10
10秒前
小马甲应助美满的曼寒采纳,获得10
10秒前
10秒前
凹凸曼发布了新的文献求助30
11秒前
11秒前
11秒前
HenryXiao关注了科研通微信公众号
12秒前
12秒前
哈哈哈哈哈哈完成签到,获得积分10
12秒前
天天摸鱼完成签到,获得积分10
12秒前
WQY发布了新的文献求助10
13秒前
Yuan关注了科研通微信公众号
13秒前
bkagyin应助迪迦采纳,获得30
13秒前
wocao完成签到 ,获得积分10
13秒前
彧辰完成签到 ,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650