间充质干细胞
药理学
氧化应激
炎症
安普克
医学
化学
癌症研究
免疫学
蛋白激酶A
病理
激酶
生物化学
作者
Hongmiao Tao,Lin Li,Lihua Dong,Haohao Chen,Xiaoyun Shan,Lujie Zhuge,Hongqiang Lou
标识
DOI:10.1016/j.cbi.2023.110779
摘要
Bone marrow-derived mesenchymal stem cells (BMSCs) transplantation is a promising therapeutic strategy for cerebral ischemia/reperfusion (I/R) injury; however, the clinical outcome is barely satisfactory and demands further improvement. The present study aimed to investigate whether preconditioning of BMSCs by recombinant human growth differentiation factor 7 (rhGDF7) could enhance its therapeutic capacity against cerebral I/R injury. Mouse BMSCs and primary neurons were co-cultured and exposed to oxygen glucose deprivation/reperfusion (OGD/R) stimulation. To investigate the role of exosomal microRNA-369-3p (miR-369-3p), inhibitors, RNAi and the miR-369-3p antagomir were used. Meanwhile, mice were intravenously injected with rhGDF7-preconditioned BMSCs and then received cerebral I/R surgery. Markers of inflammation, oxidative stress and neural damage were evaluated. To inhibit AMP-activated protein kinase (AMPK), compound C was used in vivo and in vitro. Compared with cell-free transwell or vehicle-preconditioned BMSCs, rhGDF7-preconditioned BMSCs significantly prevented OGD/R-induced inflammation, oxidative stress and neural damage in vitro. Meanwhile, rhGDF7-preconditioned BMSCs could prevent I/R-induced cerebral inflammation and oxidative stress in vivo. Mechanistically, rhGDF7 preconditioning significantly increased exosomal miR-369-3p expression in BMSCs and then transferred exosomal miR-369-3p to primary neurons, where it bound to phosphodiesterase 4 D (Pde4d) 3'-UTR and downregulated PDE4D expression, thereby preventing I/R-induced inflammation, oxidative stress and neural damage through activating AMPK pathway. Our study identify GDF7 pretreatment as a promising adjuvant reagent to improve the therapeutic potency of BMSCs for cerebral I/R injury and ischemic stroke.
科研通智能强力驱动
Strongly Powered by AbleSci AI