Medical Image Processing based on Generative Adversarial Networks: A Systematic Review

计算机科学 分割 人工智能 模式 对抗制 领域(数学) 医学影像学 模态(人机交互) 生成语法 图像处理 生成对抗网络 机器学习 模式识别(心理学) 图像(数学) 数学 社会学 纯数学 社会科学
作者
Jun Liu,Kunqi Li,Hua Dong,Yuanyuan Han,Rihui Li
出处
期刊:Current Medical Imaging Reviews [Bentham Science Publishers]
卷期号:20 被引量:1
标识
DOI:10.2174/0115734056258198230920042358
摘要

Generative adversarial networks (GANs) have demonstrated superior data generation capabilities compared to other methods, making them popular for use in medical image applications. These features have intrigued researchers in the medical imaging field, resulting in a swift implementation of these techniques in various conventional and novel applications such as image reconstruction, segmentation, detection, classification, and cross-modality synthesis. A comprehensive review of recent medical imaging breakthroughs will benefit researchers interested in this field. In this review, we aimed to introduce the origin, principle, and extended forms of GANs and summarize the state-of-the-art progress of GAN-based medical image processing methods.We searched the literature for studies on Google Scholar and PubMed using the keywords "Segmentation," "Classification," "medical image," and "generative adversarial network." Specifically, the initial search revealed 5423 publications after the removal of duplicated and non-accessible fulltext publications. Then, after the title and abstract screening, 680 underwent full-text screening. Finally, 121 studies were included in our final analysis after full-text screening.The date range of the studies covered in this review is from January 1, 2017, to the present. After a thorough screening and qualification assessment, 121 studies involving GAN-based applications in seven areas of medical images were included in the final methodological review. These areas included synthesis, classification, segmentation, conversion, reconstruction, denoising, and lesion detection. We further classified and summarized these papers into clinical applications, classification methods, and imaging modalities.We thoroughly examined the latest research progress of GAN-based medical image augmentation. These techniques effectively alleviate the challenge of limited training samples for medical image diagnosis and treatment models. Furthermore, several critical issues associated with GANs, such as pattern collapse, instability, and lack of interpretability, require attention in future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助解语花采纳,获得30
刚刚
裴向雪发布了新的文献求助10
2秒前
充电宝应助醉熏的鑫采纳,获得10
3秒前
lucky完成签到,获得积分10
3秒前
7秒前
9秒前
莫离发布了新的文献求助10
11秒前
11秒前
xuxu96完成签到,获得积分10
12秒前
科研通AI5应助Fengliguantou采纳,获得10
12秒前
Rondab应助裴向雪采纳,获得30
14秒前
14秒前
高铭泽发布了新的文献求助10
14秒前
淡定海亦发布了新的文献求助10
15秒前
小陈要发SCI完成签到 ,获得积分10
16秒前
bsf123完成签到,获得积分10
17秒前
17秒前
jinjin发布了新的文献求助10
19秒前
田様应助粉色棉毛裤采纳,获得10
19秒前
Ning发布了新的文献求助10
21秒前
蒋丞发布了新的文献求助10
24秒前
24秒前
微笑小天鹅完成签到,获得积分10
24秒前
25秒前
粉色棉毛裤完成签到,获得积分10
28秒前
所所应助miles采纳,获得10
28秒前
29秒前
ll完成签到 ,获得积分10
29秒前
31秒前
WendyWen完成签到,获得积分10
31秒前
31秒前
拉长的问晴完成签到,获得积分10
32秒前
在水一方应助彳亍采纳,获得10
32秒前
32秒前
自由扬完成签到 ,获得积分10
35秒前
勤劳的老九完成签到,获得积分10
35秒前
36秒前
解语花发布了新的文献求助30
37秒前
38秒前
张奇完成签到 ,获得积分10
38秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993151
求助须知:如何正确求助?哪些是违规求助? 3534027
关于积分的说明 11264447
捐赠科研通 3273745
什么是DOI,文献DOI怎么找? 1806151
邀请新用户注册赠送积分活动 883016
科研通“疑难数据库(出版商)”最低求助积分说明 809652