A hybrid decision support system for adaptive trading strategies: Combining a rule-based expert system with a deep reinforcement learning strategy

强化学习 计算机科学 交易策略 算法交易 人工智能 机器学习 数据库事务 学习分类器系统 决策支持系统 股票市场 财务 业务 数据库 生物 古生物学
作者
Yuhee Kwon,Zoonky Lee
出处
期刊:Decision Support Systems [Elsevier BV]
卷期号:177: 114100-114100 被引量:15
标识
DOI:10.1016/j.dss.2023.114100
摘要

Stock trading strategies pose challenging applications of machine learning for significant commercial yields in the finance industry, drawing the attention of both economists and computer scientists. Until now, many researchers have proposed various methods to implement intelligent trading strategy systems that can support decisions regarding stock trading. Some studies have shown that the problem of trading strategies can be successfully addressed by applying hybrid approaches. Motivated by this, we propose a hybrid decision support system for adaptive trading strategies that combines a rule-based system with deep reinforcement learning to self-improve by learning with human expertise. This study overcomes the limitations of previous hybrid models that mainly have focused on optimizing trading decisions and improving forecasting accuracy. The proposed hybrid model combines decision-making information from a rule-based model to enable the agent of reinforcement learning to capture more trading opportunities. In addition, the investor's available balance states facilitate adaptive learning by interacting with the environment. Moreover, the proposed trading mechanism adjusts the volume size using the policy gradient algorithm's action probabilities, resulting in improved risk-adjusted returns. The proposed hybrid model has the potential to be a reliable trading system in real-world applications through its ability to adapt to different market scenarios, withstand stressful market conditions, reduce transaction costs, scale to various index funds, and extend the proposed hybrid structure. This study highlights the applicability of more advanced machine learning in financial areas, and we also suggest expanding this approach to adaptive decision-making systems in other fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
khlkkfc完成签到,获得积分10
4秒前
4秒前
赘婿应助Jzhang采纳,获得10
4秒前
ARTHUR8N24发布了新的文献求助10
6秒前
AnJaShua发布了新的文献求助10
6秒前
嘉嘉琦发布了新的文献求助10
6秒前
leeshho完成签到,获得积分10
8秒前
四海给四海的求助进行了留言
10秒前
10秒前
忧心的往事完成签到,获得积分10
11秒前
皮克斯完成签到 ,获得积分10
11秒前
13秒前
13秒前
14秒前
呀呼发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
小园饼干发布了新的文献求助10
18秒前
18秒前
华仔应助墨染书香采纳,获得10
18秒前
19秒前
畅快沁发布了新的文献求助10
20秒前
chikaoyu发布了新的文献求助10
21秒前
ppxx发布了新的文献求助10
21秒前
22秒前
可爱的函函应助guojingjing采纳,获得10
22秒前
Lancer发布了新的文献求助10
22秒前
zyt发布了新的文献求助10
23秒前
小晋完成签到,获得积分10
24秒前
24秒前
欧阳静芙发布了新的文献求助10
25秒前
CodeCraft应助Jerry采纳,获得10
27秒前
chen发布了新的文献求助10
27秒前
27秒前
27秒前
fate发布了新的文献求助10
29秒前
柔弱的一鸣完成签到 ,获得积分10
30秒前
飞翔云端完成签到,获得积分10
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670801
求助须知:如何正确求助?哪些是违规求助? 3227675
关于积分的说明 9776795
捐赠科研通 2937868
什么是DOI,文献DOI怎么找? 1609663
邀请新用户注册赠送积分活动 760441
科研通“疑难数据库(出版商)”最低求助积分说明 735928