Multi-task learning for arousal and sleep stage detection using fully convolutional networks

唤醒 计算机科学 任务(项目管理) 卷积神经网络 分割 睡眠(系统调用) 召回 睡眠阶段 深度学习 人工智能 认知心理学 模式识别(心理学) 语音识别 机器学习 心理学 多导睡眠图 脑电图 精神科 神经科学 经济 管理 操作系统
作者
Hasan Zan,Abdulnasır Yildiz
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (5): 056034-056034 被引量:5
标识
DOI:10.1088/1741-2552/acfe3a
摘要

Objective.Sleep is a critical physiological process that plays a vital role in maintaining physical and mental health. Accurate detection of arousals and sleep stages is essential for the diagnosis of sleep disorders, as frequent and excessive occurrences of arousals disrupt sleep stage patterns and lead to poor sleep quality, negatively impacting physical and mental health. Polysomnography is a traditional method for arousal and sleep stage detection that is time-consuming and prone to high variability among experts.Approach. In this paper, we propose a novel multi-task learning approach for arousal and sleep stage detection using fully convolutional neural networks. Our model, FullSleepNet, accepts a full-night single-channel EEG signal as input and produces segmentation masks for arousal and sleep stage labels. FullSleepNet comprises four modules: a convolutional module to extract local features, a recurrent module to capture long-range dependencies, an attention mechanism to focus on relevant parts of the input, and a segmentation module to output final predictions.Main results.By unifying the two interrelated tasks as segmentation problems and employing a multi-task learning approach, FullSleepNet achieves state-of-the-art performance for arousal detection with an area under the precision-recall curve of 0.70 on Sleep Heart Health Study and Multi-Ethnic Study of Atherosclerosis datasets. For sleep stage classification, FullSleepNet obtains comparable performance on both datasets, achieving an accuracy of 0.88 and an F1-score of 0.80 on the former and an accuracy of 0.83 and an F1-score of 0.76 on the latter.Significance. Our results demonstrate that FullSleepNet offers improved practicality, efficiency, and accuracy for the detection of arousal and classification of sleep stages using raw EEG signals as input.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DXXX发布了新的文献求助10
刚刚
111完成签到,获得积分10
2秒前
3秒前
半个桃子完成签到,获得积分20
3秒前
3秒前
害羞的墨镜完成签到,获得积分10
4秒前
Hello应助聪慧的微笑采纳,获得10
5秒前
万能图书馆应助yiw采纳,获得10
5秒前
星纪发布了新的文献求助10
5秒前
愉快的语堂完成签到,获得积分10
6秒前
yyyyyy完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
科研通AI2S应助黄婷采纳,获得10
8秒前
微风418发布了新的文献求助10
8秒前
8秒前
8秒前
HOLLYWOO完成签到 ,获得积分10
9秒前
半个桃子发布了新的文献求助10
9秒前
10秒前
脱碳甲醇完成签到,获得积分20
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得10
10秒前
李爱国应助科研通管家采纳,获得30
10秒前
10秒前
打打应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
耍酷白云发布了新的文献求助10
11秒前
12秒前
科研通AI5应助开放夏旋采纳,获得10
12秒前
脱碳甲醇发布了新的文献求助10
13秒前
KALS发布了新的文献求助10
13秒前
CodeCraft应助无情的匪采纳,获得10
13秒前
科研通AI2S应助小夜盲J采纳,获得10
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979946
求助须知:如何正确求助?哪些是违规求助? 3524093
关于积分的说明 11219832
捐赠科研通 3261529
什么是DOI,文献DOI怎么找? 1800686
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807226