Multi-task learning for arousal and sleep stage detection using fully convolutional networks

唤醒 计算机科学 任务(项目管理) 卷积神经网络 分割 睡眠(系统调用) 召回 睡眠阶段 深度学习 人工智能 认知心理学 模式识别(心理学) 语音识别 机器学习 心理学 多导睡眠图 脑电图 精神科 神经科学 经济 管理 操作系统
作者
Hasan Zan,Abdulnasır Yildiz
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (5): 056034-056034 被引量:5
标识
DOI:10.1088/1741-2552/acfe3a
摘要

Objective.Sleep is a critical physiological process that plays a vital role in maintaining physical and mental health. Accurate detection of arousals and sleep stages is essential for the diagnosis of sleep disorders, as frequent and excessive occurrences of arousals disrupt sleep stage patterns and lead to poor sleep quality, negatively impacting physical and mental health. Polysomnography is a traditional method for arousal and sleep stage detection that is time-consuming and prone to high variability among experts.Approach. In this paper, we propose a novel multi-task learning approach for arousal and sleep stage detection using fully convolutional neural networks. Our model, FullSleepNet, accepts a full-night single-channel EEG signal as input and produces segmentation masks for arousal and sleep stage labels. FullSleepNet comprises four modules: a convolutional module to extract local features, a recurrent module to capture long-range dependencies, an attention mechanism to focus on relevant parts of the input, and a segmentation module to output final predictions.Main results.By unifying the two interrelated tasks as segmentation problems and employing a multi-task learning approach, FullSleepNet achieves state-of-the-art performance for arousal detection with an area under the precision-recall curve of 0.70 on Sleep Heart Health Study and Multi-Ethnic Study of Atherosclerosis datasets. For sleep stage classification, FullSleepNet obtains comparable performance on both datasets, achieving an accuracy of 0.88 and an F1-score of 0.80 on the former and an accuracy of 0.83 and an F1-score of 0.76 on the latter.Significance. Our results demonstrate that FullSleepNet offers improved practicality, efficiency, and accuracy for the detection of arousal and classification of sleep stages using raw EEG signals as input.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yznfly应助研友_Z7gKEZ采纳,获得200
刚刚
1秒前
ff完成签到,获得积分10
1秒前
郭松林发布了新的文献求助10
1秒前
BowieHuang应助周涛采纳,获得10
2秒前
朱朱完成签到,获得积分10
2秒前
2秒前
GWF完成签到,获得积分10
3秒前
3秒前
自信大白菜真实的钥匙完成签到,获得积分10
3秒前
ixzs发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
小任同学发布了新的文献求助10
5秒前
时尚新柔完成签到,获得积分20
5秒前
5秒前
康康完成签到,获得积分10
6秒前
6秒前
MiracleRice发布了新的文献求助10
6秒前
文泽完成签到,获得积分10
6秒前
爆米花应助开心的紫烟采纳,获得10
6秒前
我是老大应助111采纳,获得20
7秒前
大阿申发布了新的文献求助10
7秒前
9秒前
9秒前
小超要努力完成签到,获得积分10
10秒前
缥缈的傀斗关注了科研通微信公众号
10秒前
11秒前
舒晓呀发布了新的文献求助10
11秒前
11秒前
科研通AI6应助凌晨里采纳,获得10
11秒前
11秒前
田様应助lalala采纳,获得10
11秒前
科研通AI2S应助PWF采纳,获得10
12秒前
英姑应助科研小黄采纳,获得10
12秒前
12秒前
研友_LBoggn发布了新的文献求助10
13秒前
无花果应助科研通管家采纳,获得10
13秒前
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578435
求助须知:如何正确求助?哪些是违规求助? 4663226
关于积分的说明 14745504
捐赠科研通 4604000
什么是DOI,文献DOI怎么找? 2526820
邀请新用户注册赠送积分活动 1496380
关于科研通互助平台的介绍 1465718