Semi-supervised adversarial discriminative learning approach for intelligent fault diagnosis of wind turbine

计算机科学 判别式 机器学习 人工智能 断层(地质) 风力发电 监督学习 深度学习 涡轮机 公制(单位) 过程(计算) 人工神经网络 故障检测与隔离 工程类 机械工程 运营管理 地震学 电气工程 执行机构 地质学 操作系统
作者
Te Han,Wenzhen Xie,Zhongyi Pei
出处
期刊:Information Sciences [Elsevier]
卷期号:648: 119496-119496 被引量:4
标识
DOI:10.1016/j.ins.2023.119496
摘要

Wind turbines play a crucial role in renewable energy generation systems and are frequently exposed to challenging operational environments. Monitoring and diagnosing potential faults during their operation is essential for improving reliability and reducing maintenance costs. Supervised learning using data-driven techniques, particularly deep learning, offers a viable approach for developing fault diagnosis models. However, a significant challenge in practical wind power equipment lies in the scarcity of annotated samples required to train these models effectively. This paper proposes a semi-supervised fault diagnosis approach specifically designed for wind turbines, aiming to address this challenge. Initially, a semi-supervised deep neural network is constructed using adversarial learning, where a limited set of annotated samples is used in conjunction with a vast amount of unannotated samples. The health status features present in the unannotated samples are leveraged to capture a generalized representation of the underlying features. Subsequently, a metric learning-guided discriminative features enhancement technique is employed to improve the separability of different manifolds, thereby enhancing the performance of the semi-supervised training process. By employing this methodology, it becomes possible to develop a fault diagnosis model with superior accuracy using only a limited amount of annotated samples. Comprehensive fault diagnosis experiments were conducted on a wind turbine fault dataset, revealing the efficacy and superiority of the presented methodology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
baocq发布了新的文献求助10
1秒前
传奇3应助Liyipu采纳,获得30
2秒前
2秒前
2秒前
3秒前
3秒前
4秒前
科研通AI5应助镜子采纳,获得10
4秒前
冂xx易云发布了新的文献求助20
5秒前
我主沉浮完成签到,获得积分10
6秒前
6秒前
Minelic发布了新的文献求助20
6秒前
轻松的一刀完成签到,获得积分10
7秒前
领导范儿应助ZYH采纳,获得10
8秒前
8秒前
9秒前
镜子发布了新的文献求助10
9秒前
默默雨竹发布了新的文献求助10
9秒前
10秒前
10秒前
我主沉浮发布了新的文献求助10
10秒前
小伯Eason发布了新的文献求助10
11秒前
蒋蒋发布了新的文献求助10
11秒前
12秒前
小二郎应助fleee采纳,获得10
12秒前
14秒前
白宏宝完成签到,获得积分20
15秒前
研友_VZG7GZ应助Minelic采纳,获得10
15秒前
大胆的甜瓜完成签到,获得积分10
15秒前
xiaoqian完成签到,获得积分10
15秒前
xx完成签到,获得积分10
15秒前
科研通AI5应助怕黑的路人采纳,获得10
17秒前
会撒娇的梦寒完成签到,获得积分20
17秒前
17秒前
白宏宝发布了新的文献求助10
17秒前
tzj发布了新的文献求助10
18秒前
敏感人杰发布了新的文献求助10
19秒前
今后应助大胆的甜瓜采纳,获得10
19秒前
zhongzihao完成签到,获得积分10
19秒前
wuwang完成签到,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3585095
求助须知:如何正确求助?哪些是违规求助? 3154094
关于积分的说明 9499940
捐赠科研通 2856781
什么是DOI,文献DOI怎么找? 1570195
邀请新用户注册赠送积分活动 736012
科研通“疑难数据库(出版商)”最低求助积分说明 721502