DHT-Net: Dynamic Hierarchical Transformer Network for Liver and Tumor Segmentation

计算机科学 分割 人工智能 模式识别(心理学) 变压器 物理 量子力学 电压
作者
Ruiyang Li,Longchang Xu,Kun Xie,Jianfeng Song,Xiaowen Ma,Liang Chang,Qingsen Yan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (7): 3443-3454 被引量:20
标识
DOI:10.1109/jbhi.2023.3268218
摘要

Automatic segmentation of liver tumors is crucial to assist radiologists in clinical diagnosis. While various deep learningbased algorithms have been proposed, such as U-Net and its variants, the inability to explicitly model long-range dependencies in CNN limits the extraction of complex tumor features. Some researchers have applied Transformer-based 3D networks to analyze medical images. However, the previous methods focus on modeling the local information (eg. edge) or global information (eg. morphology) with fixed network weights. To learn and extract complex tumor features of varied tumor size, location, and morphology for more accurate segmentation, we propose a Dynamic Hierarchical Transformer Network, named DHT-Net. The DHT-Net mainly contains a Dynamic Hierarchical Transformer (DHTrans) structure and an Edge Aggregation Block (EAB). The DHTrans first automatically senses the tumor location by Dynamic Adaptive Convolution, which employs hierarchical operations with the different receptive field sizes to learn the features of various tumors, thus enhancing the semantic representation ability of tumor features. Then, to adequately capture the irregular morphological features in the tumor region, DHTrans aggregates global and local texture information in a complementary manner. In addition, we introduce the EAB to extract detailed edge features in the shallow fine-grained details of the network, which provides sharp boundaries of liver and tumor regions. We evaluate DHT-Net on two challenging public datasets, LiTS and 3DIRCADb. The proposed method has shown superior liver and tumor segmentation performance compared to several state-of-the-art 2D, 3D, and 2.5D hybrid models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
瓜农完成签到,获得积分10
3秒前
安居宝完成签到,获得积分10
3秒前
有害学术辣鸡完成签到 ,获得积分10
4秒前
潘贤铖完成签到 ,获得积分10
6秒前
L同学发布了新的文献求助10
7秒前
毅诚菌完成签到,获得积分10
7秒前
9秒前
10秒前
10秒前
11秒前
ala完成签到,获得积分10
11秒前
羊铁身完成签到,获得积分10
11秒前
13秒前
13秒前
14秒前
chenlichan发布了新的文献求助10
14秒前
许子健发布了新的文献求助10
15秒前
17秒前
lihaifeng完成签到,获得积分10
18秒前
桐桐应助Lucky采纳,获得10
18秒前
19秒前
20秒前
英姑应助水濑心源采纳,获得10
24秒前
一方通行完成签到,获得积分10
26秒前
李健应助Zirong采纳,获得10
27秒前
27秒前
27秒前
蒲公英完成签到,获得积分10
28秒前
慕青应助L同学采纳,获得10
28秒前
29秒前
29秒前
30秒前
笑哦发布了新的文献求助10
30秒前
Jasper应助水濑心源采纳,获得10
31秒前
许子健发布了新的文献求助10
31秒前
李爱国应助艺心采纳,获得10
33秒前
33秒前
李二牛完成签到,获得积分10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966399
求助须知:如何正确求助?哪些是违规求助? 3511837
关于积分的说明 11160190
捐赠科研通 3246481
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874438
科研通“疑难数据库(出版商)”最低求助积分说明 804388