已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Hyperspectral Image Denoising Via Nonlocal Rank Residual Modeling

残余物 高光谱成像 降噪 张量(固有定义) 冗余(工程) 秩(图论) 算法 结构张量 数学 噪音(视频) 计算机科学 人工智能 模式识别(心理学) 应用数学 图像(数学) 组合数学 几何学 操作系统
作者
Zhiyuan Zha,Bihan Wen,Xin Yuan,Jiantao Zhou,Ce Zhu
标识
DOI:10.1109/icassp49357.2023.10096242
摘要

Nonlocal low-rank (LR) tensor modeling has shown great potential in hyperspectral image (HSI) denoising, which first uses the nonlocal self-similarity (NSS) prior to search for many similar full-band patches to form three-dimensional nonlocal full-band groups (tensors), and then usually enforces an LR penalty on each nonlocal full-band group. However, in most existing methods, the LR tensor is only approximated directly from the degraded nonlocal full-band tensor, which is subject to certain issues (e.g., in heavy noise environments) in obtaining a suboptimal tensor approximation, and thus leading to unsatisfactory denoising results. In this paper, we propose a novel nonlocal rank residual (NRR) approach for highly effective HSI denoising, which progressively approximates the underlying L-R tensor via minimizing the rank residual. Towards this end, we first obtain a good estimate of the original nonlocal full-band group by using the NSS prior, and then the rank residual between the de-graded nonlocal full-band group with the corresponding estimated nonlocal full-band group is minimized to achieve a more accurate LR tensor. Moreover, the global spectral LR prior is employed to reduce the spectral redundancy of HSI in the proposed denoising framework. Finally, we develop a simple yet effective alternating minimization algorithm to jointly refine global spectral information and nonlocal full-band groups. Experimental results clearly show that the proposed NRR algorithm outperforms many state-of-the-art HSI denoising methods. The source code of the proposed NRR algorithm for HSI denoising is available at: https://github.com/zhazhiyuan/NRR_HSI_Denoising_Demo.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
gstaihn完成签到,获得积分10
2秒前
852应助lvsehx采纳,获得10
2秒前
indigo发布了新的文献求助10
4秒前
4秒前
Owen应助徐小采纳,获得10
4秒前
岂曰无衣完成签到 ,获得积分10
5秒前
小屋完成签到,获得积分10
13秒前
17秒前
17秒前
QSQ完成签到,获得积分10
17秒前
在水一方应助拿铁采纳,获得10
19秒前
20秒前
纯真的靖琪完成签到 ,获得积分10
21秒前
英姑应助white采纳,获得10
21秒前
博修发布了新的文献求助30
21秒前
22秒前
FIN应助博修采纳,获得30
25秒前
swx完成签到,获得积分10
30秒前
义气的跳跳糖完成签到,获得积分10
30秒前
万能图书馆应助导师老八采纳,获得10
30秒前
hhhxmx发布了新的文献求助10
31秒前
可爱的函函应助hhh采纳,获得10
32秒前
32秒前
CAOHOU应助wwho_O采纳,获得10
33秒前
33秒前
34秒前
36秒前
英俊的铭应助博修采纳,获得10
37秒前
svt发布了新的文献求助10
37秒前
yangyajie发布了新的文献求助10
40秒前
水墨橙子发布了新的文献求助10
41秒前
43秒前
文子完成签到 ,获得积分10
43秒前
追寻冰淇淋应助小陆采纳,获得10
45秒前
lisunyi应助水墨橙子采纳,获得200
47秒前
47秒前
Dyying完成签到,获得积分10
48秒前
49秒前
49秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963020
求助须知:如何正确求助?哪些是违规求助? 3508944
关于积分的说明 11144216
捐赠科研通 3241909
什么是DOI,文献DOI怎么找? 1791705
邀请新用户注册赠送积分活动 873115
科研通“疑难数据库(出版商)”最低求助积分说明 803603