An improved LSTM-based model for identifying high working intensity load segments of the tractor load spectrum

计算机科学 拖拉机 工作量 模拟 人工智能 实时计算 汽车工程 工程类 操作系统
作者
Changkai Wen,Ruo-chen Li,Chunjiang Zhao,Liping Chen,Meng-hua Wang,Yanxin Yin,Zhijun Meng
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:210: 107879-107879 被引量:6
标识
DOI:10.1016/j.compag.2023.107879
摘要

In order to solve the problems of serious redundancy of existing load spectrum data, unclear identification of load segments corresponding to high working intensity, and failure of load spectrum interception to meet the requirements of heavy load conditions, this paper proposes an MHA-ConvLSTM (Multi-head attention Convolutional LSTM) network model for identifying high working intensity load segments of the tractor load spectrum. The deep learning model integrates a multi-head attention mechanism and ConvLSTM network as the core, keeping the temporal order of continuously changing load sequences as the basic principle, deeply mining the local features contained within the small range load of dynamically changing load, and strengthening the matching relationship of the intrinsic features in long distance and large data volume load. This research selects rotary tillage as the verification condition, builds the multi-sensor test system to carry out the working load test, and takes the tractor rotary tillage load spectrum data as the validation object. The analysis shows that the accuracy and F1-score of the MHA-ConvLSTM model reach 97.69% and 97.83%, respectively, and the operation time is only 0.5289 s, which is 15.82% faster than LSTM. In addition, the model in this paper was used to identify 399 load segments with high workload and high work intensity, and 388 load segments were successfully verified with an error rate of less than 3%. This paper provides a new technical solution for applying the agricultural equipment load spectrum.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
坦率紫烟发布了新的文献求助10
1秒前
CATH发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
huww发布了新的文献求助10
6秒前
善学以致用应助锦云采纳,获得10
6秒前
6秒前
6秒前
Bell完成签到,获得积分20
8秒前
dropofwater完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
放肆青春完成签到,获得积分10
10秒前
091发布了新的文献求助10
10秒前
肖礼成完成签到,获得积分10
10秒前
左丘丹烟完成签到 ,获得积分10
11秒前
11秒前
彭于晏发布了新的文献求助10
11秒前
顾矜应助孙莹采纳,获得10
11秒前
12秒前
小七完成签到,获得积分10
12秒前
yae发布了新的文献求助10
12秒前
bubble完成签到 ,获得积分10
13秒前
蒋蒋发布了新的文献求助10
13秒前
14秒前
赵苏程发布了新的文献求助10
15秒前
夏天来了发布了新的文献求助10
15秒前
xx完成签到,获得积分10
17秒前
JamesPei应助melon采纳,获得10
17秒前
锦云发布了新的文献求助10
18秒前
打打应助专注的问筠采纳,获得10
18秒前
木樨完成签到,获得积分10
19秒前
赘婿应助周zijian采纳,获得10
20秒前
lemonyu发布了新的文献求助10
20秒前
CipherSage应助小谢同学采纳,获得10
22秒前
kathy完成签到,获得积分10
22秒前
我是老大应助赵苏程采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3585095
求助须知:如何正确求助?哪些是违规求助? 3154027
关于积分的说明 9499819
捐赠科研通 2856754
什么是DOI,文献DOI怎么找? 1570175
邀请新用户注册赠送积分活动 736007
科研通“疑难数据库(出版商)”最低求助积分说明 721485