Design optimization of automotive carbon fiber composite material floor laminate based on PSO-BFO algorithm

汽车工业 复合数 材料科学 复合材料 纤维 计算机科学 算法 工程类 航空航天工程
作者
Shuai Zhang,Pengfei Wang,Wenchao Xu,Weizhen Wei,Kefang Cai
标识
DOI:10.1177/09544070241283989
摘要

In response to the current challenges of low precision and efficiency in the optimization of composite material layups, the insufficient lightweight of automotive body floors, and the high cost of carbon fiber composites, this study introduces an optimized design method for carbon fiber composite flooring layups. Based on implicit parametric technology, a hybrid PSO-BFO (Particle Swarm Optimization-Bacterial Foraging Optimization) algorithm is employed. This approach achieves an integrated optimization of materials, processes, and structures, thereby balancing and reducing costs. The SFE-CONCEPT is utilized to establish an implicit parameterization model for the body floor, which is validated through experiments and finite element simulation analysis. Concept design and modeling of the carbon fiber composite material floor laminate are performed. Continuous variable optimization is employed to determine the thickness, tile shape, and number of layers for the front, middle, and rear floors. A continuous variable discretization rounding strategy is used to obtain the discrete layer numbers for each laminate orientation of the composite material floor. The continuous fiber lamination strategy is applied to create different shared lamination regions. The PSO-BFO hybrid optimization method is proposed to optimize the lamination sequence as a multi-objective optimization, addressing the challenges of discrete lamination sequence, explosive combinations, and multiple variables in the optimization design of carbon fiber composite material floor laminates. The optimization results demonstrate improvements of 34.4% in floor quality M, 6.0% in static bending stiffness BS, and 5.3% in lightweight coefficient QLX using the proposed PSO-BFO method. PSO-BFO and PSO-GA (Particle Swarm Optimization-Genetic Algorithm) methods are more capable of obtaining global optimal solutions for complex optimization problems than single optimization algorithms. Still, the results obtained by the PSO-BFO method are more balanced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝意完成签到,获得积分0
1秒前
xiaohongmao完成签到,获得积分10
6秒前
9秒前
qweerrtt完成签到,获得积分10
16秒前
16秒前
与共发布了新的文献求助10
17秒前
carly完成签到 ,获得积分10
18秒前
颢懿完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
24秒前
ljc完成签到 ,获得积分10
25秒前
Java完成签到,获得积分10
29秒前
31秒前
鲤鱼安青完成签到 ,获得积分10
33秒前
33秒前
dollarpuff完成签到 ,获得积分10
36秒前
36秒前
mmmmmMM完成签到,获得积分10
43秒前
luckweb完成签到,获得积分10
49秒前
猫的毛完成签到 ,获得积分10
50秒前
nicky完成签到 ,获得积分10
51秒前
麦子完成签到 ,获得积分10
52秒前
52秒前
Wilson完成签到 ,获得积分10
53秒前
luckweb发布了新的文献求助10
53秒前
53秒前
57秒前
1分钟前
传奇3应助wujiwuhui采纳,获得10
1分钟前
开心寄松完成签到,获得积分10
1分钟前
北宫完成签到 ,获得积分10
1分钟前
wansida完成签到,获得积分10
1分钟前
QXS完成签到 ,获得积分10
1分钟前
1分钟前
菠萝完成签到 ,获得积分10
1分钟前
领导范儿应助Villanellel采纳,获得10
1分钟前
wintersss完成签到,获得积分10
1分钟前
尹尹发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
zzzzzz完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022