Design optimization of automotive carbon fiber composite material floor laminate based on PSO-BFO algorithm

汽车工业 复合数 材料科学 复合材料 纤维 计算机科学 算法 工程类 航空航天工程
作者
Shuai Zhang,Pengfei Wang,Wenchao Xu,Weizhen Wei,Kefang Cai
标识
DOI:10.1177/09544070241283989
摘要

In response to the current challenges of low precision and efficiency in the optimization of composite material layups, the insufficient lightweight of automotive body floors, and the high cost of carbon fiber composites, this study introduces an optimized design method for carbon fiber composite flooring layups. Based on implicit parametric technology, a hybrid PSO-BFO (Particle Swarm Optimization-Bacterial Foraging Optimization) algorithm is employed. This approach achieves an integrated optimization of materials, processes, and structures, thereby balancing and reducing costs. The SFE-CONCEPT is utilized to establish an implicit parameterization model for the body floor, which is validated through experiments and finite element simulation analysis. Concept design and modeling of the carbon fiber composite material floor laminate are performed. Continuous variable optimization is employed to determine the thickness, tile shape, and number of layers for the front, middle, and rear floors. A continuous variable discretization rounding strategy is used to obtain the discrete layer numbers for each laminate orientation of the composite material floor. The continuous fiber lamination strategy is applied to create different shared lamination regions. The PSO-BFO hybrid optimization method is proposed to optimize the lamination sequence as a multi-objective optimization, addressing the challenges of discrete lamination sequence, explosive combinations, and multiple variables in the optimization design of carbon fiber composite material floor laminates. The optimization results demonstrate improvements of 34.4% in floor quality M, 6.0% in static bending stiffness BS, and 5.3% in lightweight coefficient QLX using the proposed PSO-BFO method. PSO-BFO and PSO-GA (Particle Swarm Optimization-Genetic Algorithm) methods are more capable of obtaining global optimal solutions for complex optimization problems than single optimization algorithms. Still, the results obtained by the PSO-BFO method are more balanced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kb发布了新的文献求助10
刚刚
dafwfwaf完成签到,获得积分20
刚刚
Snow完成签到 ,获得积分10
1秒前
1秒前
CC发布了新的文献求助10
1秒前
小苏打完成签到,获得积分10
2秒前
Xiaoxiao应助程琳采纳,获得10
2秒前
ycc完成签到 ,获得积分10
2秒前
畏寒的北完成签到,获得积分10
3秒前
爆米花应助单纯的雅香采纳,获得10
3秒前
俭朴的玉兰完成签到 ,获得积分10
3秒前
4秒前
4秒前
5秒前
5秒前
5秒前
adazbd发布了新的文献求助10
5秒前
Jenny应助木头人采纳,获得10
5秒前
ATAYA完成签到,获得积分10
6秒前
6秒前
畏寒的北发布了新的文献求助10
6秒前
6秒前
7秒前
地下室没有鬼完成签到 ,获得积分10
7秒前
whh123完成签到 ,获得积分10
7秒前
天天快乐应助空禅yew采纳,获得10
8秒前
在水一方应助开心采纳,获得10
9秒前
Akim应助王w采纳,获得10
9秒前
towerman发布了新的文献求助10
9秒前
畅快平蓝完成签到,获得积分10
9秒前
大棒槌发布了新的文献求助10
10秒前
10秒前
Ann完成签到,获得积分10
10秒前
今今发布了新的文献求助10
11秒前
123123完成签到 ,获得积分10
11秒前
SciGPT应助伊酒采纳,获得10
12秒前
何糖发布了新的文献求助10
13秒前
ding应助SEV采纳,获得10
13秒前
田様应助csq采纳,获得10
13秒前
dafwfwaf发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808