Design optimization of automotive carbon fiber composite material floor laminate based on PSO-BFO algorithm

汽车工业 复合数 材料科学 复合材料 纤维 计算机科学 算法 工程类 航空航天工程
作者
Shuai Zhang,Pengfei Wang,Wenchao Xu,Weizhen Wei,Kefang Cai
标识
DOI:10.1177/09544070241283989
摘要

In response to the current challenges of low precision and efficiency in the optimization of composite material layups, the insufficient lightweight of automotive body floors, and the high cost of carbon fiber composites, this study introduces an optimized design method for carbon fiber composite flooring layups. Based on implicit parametric technology, a hybrid PSO-BFO (Particle Swarm Optimization-Bacterial Foraging Optimization) algorithm is employed. This approach achieves an integrated optimization of materials, processes, and structures, thereby balancing and reducing costs. The SFE-CONCEPT is utilized to establish an implicit parameterization model for the body floor, which is validated through experiments and finite element simulation analysis. Concept design and modeling of the carbon fiber composite material floor laminate are performed. Continuous variable optimization is employed to determine the thickness, tile shape, and number of layers for the front, middle, and rear floors. A continuous variable discretization rounding strategy is used to obtain the discrete layer numbers for each laminate orientation of the composite material floor. The continuous fiber lamination strategy is applied to create different shared lamination regions. The PSO-BFO hybrid optimization method is proposed to optimize the lamination sequence as a multi-objective optimization, addressing the challenges of discrete lamination sequence, explosive combinations, and multiple variables in the optimization design of carbon fiber composite material floor laminates. The optimization results demonstrate improvements of 34.4% in floor quality M, 6.0% in static bending stiffness BS, and 5.3% in lightweight coefficient QLX using the proposed PSO-BFO method. PSO-BFO and PSO-GA (Particle Swarm Optimization-Genetic Algorithm) methods are more capable of obtaining global optimal solutions for complex optimization problems than single optimization algorithms. Still, the results obtained by the PSO-BFO method are more balanced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
弧光完成签到 ,获得积分0
5秒前
dmm完成签到 ,获得积分10
6秒前
佳期如梦完成签到 ,获得积分10
8秒前
展会恩完成签到,获得积分10
8秒前
干将莫邪完成签到,获得积分10
9秒前
执着夏岚完成签到 ,获得积分10
12秒前
12秒前
15秒前
lhn完成签到 ,获得积分10
15秒前
饱满烙完成签到 ,获得积分10
16秒前
菓小柒完成签到 ,获得积分10
16秒前
18秒前
19秒前
hongxing liu发布了新的文献求助10
24秒前
Dongjie发布了新的文献求助10
26秒前
杨永佳666完成签到 ,获得积分10
27秒前
Lisztan完成签到,获得积分10
30秒前
Tysonqu完成签到,获得积分10
30秒前
萤火虫完成签到,获得积分10
31秒前
饱满的新之完成签到 ,获得积分10
33秒前
songyu完成签到,获得积分10
34秒前
34秒前
黑苹果完成签到,获得积分10
36秒前
孙总完成签到,获得积分10
37秒前
健壮仙人掌完成签到,获得积分10
40秒前
鲸鱼打滚完成签到 ,获得积分10
41秒前
传奇3应助科研通管家采纳,获得10
44秒前
hongxing liu完成签到,获得积分10
46秒前
紫金之巅完成签到 ,获得积分10
47秒前
快乐的90后fjk完成签到 ,获得积分10
48秒前
漂亮的忆文完成签到,获得积分10
52秒前
蜗牛完成签到 ,获得积分10
54秒前
科研通AI2S应助hongxing liu采纳,获得10
57秒前
haochi完成签到,获得积分10
1分钟前
Gavin完成签到,获得积分10
1分钟前
fatcat完成签到,获得积分10
1分钟前
qianci2009完成签到,获得积分10
1分钟前
徐旖旎完成签到,获得积分10
1分钟前
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968559
求助须知:如何正确求助?哪些是违规求助? 3513358
关于积分的说明 11167370
捐赠科研通 3248804
什么是DOI,文献DOI怎么找? 1794465
邀请新用户注册赠送积分活动 875116
科研通“疑难数据库(出版商)”最低求助积分说明 804664