亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Design optimization of automotive carbon fiber composite material floor laminate based on PSO-BFO algorithm

汽车工业 复合数 材料科学 复合材料 纤维 计算机科学 算法 工程类 航空航天工程
作者
Shuai Zhang,Pengfei Wang,Wenchao Xu,Weizhen Wei,Kefang Cai
标识
DOI:10.1177/09544070241283989
摘要

In response to the current challenges of low precision and efficiency in the optimization of composite material layups, the insufficient lightweight of automotive body floors, and the high cost of carbon fiber composites, this study introduces an optimized design method for carbon fiber composite flooring layups. Based on implicit parametric technology, a hybrid PSO-BFO (Particle Swarm Optimization-Bacterial Foraging Optimization) algorithm is employed. This approach achieves an integrated optimization of materials, processes, and structures, thereby balancing and reducing costs. The SFE-CONCEPT is utilized to establish an implicit parameterization model for the body floor, which is validated through experiments and finite element simulation analysis. Concept design and modeling of the carbon fiber composite material floor laminate are performed. Continuous variable optimization is employed to determine the thickness, tile shape, and number of layers for the front, middle, and rear floors. A continuous variable discretization rounding strategy is used to obtain the discrete layer numbers for each laminate orientation of the composite material floor. The continuous fiber lamination strategy is applied to create different shared lamination regions. The PSO-BFO hybrid optimization method is proposed to optimize the lamination sequence as a multi-objective optimization, addressing the challenges of discrete lamination sequence, explosive combinations, and multiple variables in the optimization design of carbon fiber composite material floor laminates. The optimization results demonstrate improvements of 34.4% in floor quality M, 6.0% in static bending stiffness BS, and 5.3% in lightweight coefficient QLX using the proposed PSO-BFO method. PSO-BFO and PSO-GA (Particle Swarm Optimization-Genetic Algorithm) methods are more capable of obtaining global optimal solutions for complex optimization problems than single optimization algorithms. Still, the results obtained by the PSO-BFO method are more balanced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
直率香寒完成签到,获得积分10
20秒前
葱饼完成签到 ,获得积分10
36秒前
张立人发布了新的文献求助10
52秒前
53秒前
53秒前
大模型应助科研通管家采纳,获得10
53秒前
53秒前
jyy应助科研通管家采纳,获得10
54秒前
54秒前
jyy应助科研通管家采纳,获得10
54秒前
完美芹发布了新的文献求助10
1分钟前
Benhnhk21完成签到,获得积分10
1分钟前
火星完成签到 ,获得积分10
2分钟前
souther完成签到,获得积分0
2分钟前
生姜批发刘哥完成签到 ,获得积分10
2分钟前
2分钟前
小鹿发布了新的文献求助10
2分钟前
小鹿完成签到,获得积分10
2分钟前
小蘑菇应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
caca完成签到,获得积分10
3分钟前
bkagyin应助完美芹采纳,获得10
3分钟前
高高的天亦完成签到 ,获得积分10
4分钟前
4分钟前
ding应助契合采纳,获得10
4分钟前
脑洞疼应助科研通管家采纳,获得10
4分钟前
科目三应助科研通管家采纳,获得10
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
共享精神应助科研通管家采纳,获得10
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
Ava应助张立人采纳,获得10
4分钟前
5分钟前
契合发布了新的文献求助10
5分钟前
5分钟前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346841
求助须知:如何正确求助?哪些是违规求助? 2973392
关于积分的说明 8659208
捐赠科研通 2653886
什么是DOI,文献DOI怎么找? 1453360
科研通“疑难数据库(出版商)”最低求助积分说明 672885
邀请新用户注册赠送积分活动 662830